Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA
    J Environ Biol, 2009 Jan;30(1):107-12.
    PMID: 20112871
    The presence of acrylamide in the environment poses a threat due to its well known neurotoxic, carcinogenic and teratogenic properties. Human activities in various geographical areas are the main anthropogenic source of acrylamide pollution. In this work, an acrylamide-degrading bacterium was isolated from Antarctic soil. The physiological characteristics and optimum growth conditions of the acrylamide-degrading bacteria were investigated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ7 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. The results showed that the best carbon sources for growth was glucose and sucrose with no significant difference in terms of cellular growth between the two carbon sources (p>0.05). This was followed by fructose and maltose with fructose giving significantly higher cellular growth compared to maltose (p<0.05). Lactose and citric acid did not support growth. The optimum acrylamide concentration as a nitrogen source for cellular growth was at 500 mgl(-1). At this concentration, bacterial growth showed a 2-day lag phase before degradation took place concomitant with an increase in cellular growth. The isolate exhibited optimum growth in between pH 7.5 and 8.5. The effect of incubation temperature on the growth of this isolate showed an optimum growth at 15 degrees C. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
  2. Rahman MF, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):65-72.
    PMID: 20112865
    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
  3. Shukor MY, Bakar NA, Othman AR, Yunus I, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):39-44.
    PMID: 20112861
    In this work the development of an inhibitive assay for copper using the molybdenum-reducing enzyme assay is presented. The enzyme is assayed using 12-molybdophosphoric acid at pH 5.0 as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme converts the yellowish solution into a deep blue solution. The assay is based on the ability of copper to inhibit the molybdenum-reducing enzyme from the molybdate-reducing Serratia sp. Strain DRY5. Other heavy metals tested did not inhibit the enzyme at 10 mg l(-1). The best model with high regression coefficient to measure copper inhibition is one-phase binding. The calculated IC50 (concentration causing 50% inhibition) is 0.099 mg l(-1) and the regression coefficient is 0.98. The comparative LC50, EC50 and IC50 data for copper in different toxicity tests show that the IC50 value for copper in this study is lower than those for immobilized urease, bromelain, Rainbow trout, R. meliloti, Baker's Yeast dehydrogenase activity Spirillum volutans, P. fluorescens, Aeromonas hydrophilia and synthetic activated sludge assays. However the IC50 value is higher than those for Ulva pertusa and papain assays, but within the reported range for Daphnia magna and Microtox assays.
  4. Shukor MY, Baharom NA, Masdor NA, Abdullah MP, Shamaan NA, Jamal JA, et al.
    J Environ Biol, 2009 Jan;30(1):17-22.
    PMID: 20112858
    A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
  5. Shukor MY, Hassan NA, Jusoh AZ, Perumal N, Shamaan NA, MacCormack WP, et al.
    J Environ Biol, 2009 Jan;30(1):1-6.
    PMID: 20112855
    A diesel-degrading bacterium from Antarctica has been isolated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ3 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Growth on diesel was supported optimally by ammonium sulphate, nitrate and nitrite. The bacterium grew optimally in between 10 and 15 degrees C, pH 7.0 and 3.5% (v/v) diesel. The biodegradation of diesel oil by the strain increased in efficiency from the second to the sixth day of incubation from 1.4 to 18.8% before levelling off on the eighth day n-alkane oxidizing and aldehyde reductase activities were detected in the crude enzyme preparation suggesting the existence of terminal n-alkane oxidizing activity in this bacterium.
  6. Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al.
    J Environ Biol, 2009 Jan;30(1):57-64.
    PMID: 20112864
    Several local acrylamide-degrading bacteria have been isolated. One of the isolate that exhibited the highest growth on acrylamide as a nitrogen source was then further characterized. The isolate was tentatively identified as Bacillus cereus strain DRY135 based on carbon utilization profiles using Biolog GP plates and partial 16S rDNA molecular phylogeny. The isolate grew optimally in between the temperatures of 25 and 30 degrees C and within the pH range of 6.8 to 7.0. Glucose, fructose, lactose, maltose, mannitol, citric acid and sucrose supported growth with glucose being the best carbon source. Different concentrations of acrylamide ranging from 100 to 4000 mg l(-1) incorporated into the growth media shows that the highest growth was obtained at acrylamide concentrations of between 500 to 1500 mg l(-1). At 1000 mg l(-1) of acrylamide, degradation was 90% completed after ten days of incubation with concomitant cell growth. The metabolite acrylic acid was detected in the media during degradation. Other amides such as methacrylamide, nicotinamide, acetamide, propionamide and urea supported growth with the highest growth supported by acetamide, propionamide and urea. Strain DRY135, however was not able to assimilate 2-chloroacetamide. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
  7. Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MP, Shamaan NA, et al.
    Appl Biochem Biotechnol, 2008 Mar;144(3):283-91.
    PMID: 18556817
    A heavy-metal assay has been developed using bromelain, a protease. The enzyme is assayed using casein as a substrate with Coomassie dye to track completion of hydrolysis of casein. In the absence of inhibitors, casein is hydrolysed to completion, and the solution is brown. In the presence of metal ions such as Hg2+ and Cu2+, the hydrolysis of casein is inhibited, and the solution remains blue. Exclusion of sulfhydryl protective agent and ethylenediaminetetraacetic in the original assay improved sensitivity to heavy metals several fold. The assay is sensitive to Hg2+ and Cu2+, exhibiting a dose-response curve with an IC50 of 0.15 mg 1(-1) for Hg2+ and a one-phase binding curve with an IC50 of 0.23 mg 1(-1) for Cu2+. The IC50 value for Hg2+ is found to be lower to several other assays such as immobilized urease and papain assay, whilst the IC50 value for Cu2+ is lower than immobilized urease, 15-min Microtox, and rainbow trout.
  8. Shukor MY, Rahman MF, Shamaan NA, Lee CH, Karim MI, Syed MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):293-300.
    PMID: 18556818
    Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, Km for the laboratory-prepared 10:4-phosphomolybdate is 2.56 +/- 0.25 mM (arbitrary concentration), whereas the apparent V(max) is 99.4 +/- 2.85 nmol Mo-blue min(-1) mg(-1) protein. The apparent Michaelis constant or Km for NADH as the electron donor is 1.38 +/- 0.09 mM, whereas the apparent V(max) is 102.6 +/- 1.73 nmol Mo-blue min(-1) mg(-l) protein. The apparent Km and V(max) for another electron donor, NADPH, is 1.43 +/- 0.10 mM and 57.16 +/- 1.01 nmol Mo-blue min(-1) mg(-1) protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V(max) obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.
  9. Mariana A, Zuraidawati Z, Ho TM, Kulaimi BM, Saleh I, Shukor MN, et al.
    PMID: 18564690
    A survey of ticks and other ectoparasites was carried out during a national biodiversity scientific expedition at Ulu Muda Forest Reserve, Kedah, Malaysia from 23-29 March 2003. A total of 161 animals comprising 20 species of birds, 16 species of bats, six species of non-volant small mammals and 12 species of reptiles were examined for ticks and other ectoparasites. From these animals, nine species in five genera of ticks, 10 species in two families of Mesostigmatid mites and five species of chiggers were collected. Three of the ectoparasitic species found, Dermacentor auratus, Ixodes granulatus and Leptotrombidium deliense are of known public health importance. This survey produced the first list of ticks and other ectoparasites in the forest reserve and the third study of ectoparasites in Kedah. Fourteen species of these ectoparasites are new locality records.
  10. Shukor MY, Habib SH, Rahman MF, Jirangon H, Abdullah MP, Shamaan NA, et al.
    Appl Biochem Biotechnol, 2008 Apr;149(1):33-43.
    PMID: 18350385 DOI: 10.1007/s12010-008-8137-z
    A molybdate-reducing bacterium has been locally isolated. The bacterium reduces molybdate or Mo(6+) to molybdenum blue (molybdate oxidation states of between 5+ and 6+). Different carbon sources such as acetate, formate, glycerol, citric acid, lactose, fructose, glucose, mannitol, tartarate, maltose, sucrose, and starch were used at an initial concentration of 0.2% (w/v) in low phosphate media to study their effect on the molybdate reduction efficiency of bacterium. All of the carbon sources supported cellular growth, but only sucrose, maltose, glucose, and glycerol (in decreasing order) supported molybdate reduction after 24 h of incubation. Optimum concentration of sucrose for molybdate reduction is 1.0% (w/v) after 24 h of static incubation. Ammonium sulfate, ammonium chloride, valine, OH-proline, glutamic acid, and alanine (in the order of decreasing efficiency) supported molybdate reduction with ammonium sulfate giving the highest amount of molybdenum blue after 24 h of incubation at 0.3% (w/v). The optimum molybdate concentration that supports molybdate reduction is between 15 and 25 mM. Molybdate reduction is optimum at 35 degrees C. Phosphate at concentrations higher than 5 mM strongly inhibits molybdate reduction. The molybdenum blue produced from cellular reduction exhibits a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. The isolate was tentatively identified as Serratia marcescens Strain Dr.Y6 based on carbon utilization profiles using Biolog GN plates and partial 16s rDNA molecular phylogeny.
  11. Mariana A, Zuraidawati Z, Ho TM, Mohd Kulaimi B, Saleh I, Shukor MN, et al.
    PMID: 16438136
    A survey of ticks and other ectoparasites was carried out during a national biodiversity scientific expedition at Gunung Stong Forest Reserve, Kelantan, Malaysia from 23-29 May 2003. A total of 272 animals comprised of 12 species of birds, 21 species of bats, 7 species of rodents and 2 species of insects were examined for ticks and other ectoparasites. From these animals, 5 species in 4 genera of ticks; 7 species in 2 families of Mesostigmatid mites and 5 species of chiggers were collected. Among the ectoparasites found were Ixodes granulatus and Leptotrombidium deliense, which are of known medical importance. A tick island consisting of 10 nymphal stages of Dermacentor spp was observed feeding on Rattus tiomanicus.
  12. Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Hamdi Abd Shukor M, Kamarul T
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110304.
    PMID: 31761210 DOI: 10.1016/j.msec.2019.110304
    Surgical site infection associated with surgical instruments has always been a factor in delaying post-operative recovery of patients. The evolution in surface modification of surgical instruments can be a potential choice to overcome the nosocomial infection mainly caused by bacterial populations such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A study was, therefore, conducted characterising the morphology, hydrophobicity, adhesion strength, phase, Nano-hardness, surface chemistry, antimicrobial and biocompatibility of SS 316L steel deposited with a Nano-composite layer of Silver (Ag) and Tantalum oxide (Ta2O5) using physical vapour deposition magnetron sputtering. The adhesion strength of Ag/AgTa2O5 coating on SS 316L and treated at 250-850 °C of thermal treatment was evaluated using micro-scratch. The Ag/Ag-Ta2O5-400 °C was shown a 154% improvement in adhesion strength on SS 316L when compared with as-sputtered layer or Ag/Ag-Ta2O5-250, 550, 700 and 850 °C. The FESEM, XPS, and XRD indicated the segregation of Ag on the surface of SS 316L after the crystallization. Wettability and Nano-indentation tests demonstrated an increase in hydrophobicity (77.3 ± 0.3°) and Nano-hardness (1.12 ± 0.43 GPa) when compared with as-sputtered layer, after the 400 °C of thermal treatment. The antibacterial performance on Ag/Ag-Ta2O5-400 °C indicated a significant zone of inhibition to Staphylococcus aureus (A-axis: 16.33 ± 0.58 mm; B-axis: 25.67 ± 0.58 mm, p 
  13. Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA
    Biomed Res Int, 2013;2013:871941.
    PMID: 24381945 DOI: 10.1155/2013/871941
    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.
  14. Rosli MK, Zakaria SS, Syed-Shabthar SM, Zainal ZZ, Shukor MN, Mahani MC, et al.
    Genet. Mol. Res., 2011;10(1):482-93.
    PMID: 21476194 DOI: 10.4238/vol10-1gmr1002
    The Malayan gaur (Bos gaurus hubbacki) is one of the three subspecies of gaurs that can be found in Malaysia. We examined the phylogenetic relationships of this subspecies with other species of the genus Bos (B. javanicus, B. indicus, B. taurus, and B. grunniens). The sequence of a key gene, cytochrome b, was compared among 20 Bos species and the bongo antelope, used as an outgroup. Phylogenetic reconstruction was employed using neighbor joining and maximum parsimony in PAUP and Bayesian inference in MrBayes 3.1. All tree topologies indicated that the Malayan gaur is in its own monophyletic clade, distinct from other species of the genus Bos. We also found significant branching differences in the tree topologies between wild and domestic cattle.
  15. Othman AR, Bakar NA, Halmi MI, Johari WL, Ahmad SA, Jirangon H, et al.
    Biomed Res Int, 2013;2013:371058.
    PMID: 24369531 DOI: 10.1155/2013/371058
    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.
  16. Rosli MK, Syed-Shabthar SM, Abdul-Patah P, Abdul-Samad Z, Abdul SN, Burhanuddin MN, et al.
    ScientificWorldJournal, 2014;2014:457350.
    PMID: 24715812 DOI: 10.1155/2014/457350
    Three species of otter can be found throughout Malay Peninsula: Aonyx cinereus, Lutra sumatrana, and Lutrogale perspicillata. In this study, we focused on the A. cinereus population that ranges from the southern and the east coast to the northern regions of Malay Peninsula up to southern Thailand to review the relationships between the populations based on the mitochondrial D-loop region. Forty-eight samples from six populations were recognized as Johor, Perak, Terengganu, Kelantan, Ranong, and Thale Noi. Among the 48 samples, 33 were identified as A. cinereus, seven as L. sumatrana, and eight as L. perspicillata. Phylogenetically, two subclades formed for A. cinereus. The first subclade grouped all Malay Peninsula samples except for samples from Kelantan, and the second subclade grouped Kelantan samples with Thai sample. Genetic distance analysis supported the close relationships between Thai and Kelantan samples compared to the samples from Terengganu and the other Malaysian states. A minimum-spanning network showed that Kelantan and Thailand formed a haplogroup distinct from the other populations. Our results show that Thai subspecies A. cinereus may have migrated to Kelantan from Thai mainland. We also suggest the classification of a new subspecies from Malay Peninsula, the small-clawed otter named A. cinereus kecilensis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links