Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Othman NS, Aminuddin A, Zainal Abidin S, Syafruddin SE, Ahmad MF, Mohd Mokhtar N, et al.
    Life (Basel), 2023 May 31;13(6).
    PMID: 37374078 DOI: 10.3390/life13061296
    Hyperglycemia is the hallmark of diabetes mellitus that results in oxidative stress, apoptosis, and diabetic vascular endothelial dysfunction. An increasing number of microRNAs (miRNAs) have been found to be involved in the pathogenesis of diabetic vascular complications. However, there is a limited number of studies that characterize the miRNA profile of endothelial cells exposed to hyperglycemia. Therefore, this study aims to analyze the miRNA profile of human umbilical-vein endothelial cells (HUVECs) exposed to hyperglycemia. HUVECs were divided into two groups: the control (treated with 5.5 mM glucose) and hyperglycemia (treated with 33.3 mM glucose) groups. RNA sequencing identified 17 differentially expressed miRNAs between the groups (p < 0.05). Of these, 4 miRNAs were upregulated, and 13 miRNAs were downregulated. Two of the most differentially expressed miRNAs (novel miR-1133 and miR-1225) were successfully validated with stem-loop qPCR. Collectively, the findings show that there is a differential expression pattern of miRNAs in HUVEC following exposure to hyperglycemia. These 17 differentially expressed miRNAs are involved in regulating cellular functions and pathways related to oxidative stress and apoptosis that may contribute to diabetic vascular endothelial dysfunction. The findings provide new clues on the role of miRNAs in the development of diabetic vascular endothelial dysfunction, which could be useful in future targeted therapy.
  2. Ahmad MF, Elias MH, Mat Jin N, Abu MA, Syafruddin SE, Zainuddin AA, et al.
    Front Endocrinol (Lausanne), 2023;14:1192180.
    PMID: 37455921 DOI: 10.3389/fendo.2023.1192180
    In vitro oocyte maturation (IVM) has been used worldwide. Despite the long-term implementation, the uptake of this procedure to complement current in vitro fertilization (IVF) remains low. The main reason is likely due to the non-synchronization of protocol and definition criteria, leading to difficulty in collective proper outcome data worldwide and, thus, lack of understanding of the exact IVM procedure. The review aims to consolidate the current clinical practice of IVM by dissecting relevant publications to be tailored for a current spectrum of clinical practice. Nevertheless, the background theories of oocyte maturation were also explored to provide a comprehensive understanding of the basis of IVM theories. Additional discussion of other potential uses of IVM in the future, such as in ovarian tissue cryopreservation known as OTO-IVM for fertility preservation and among women with diminished ovarian reserve, was also explored. Otherwise, future collaboration among all IVM centers is paramount for better collection of clinical data to provide valid recommendations for IVM in clinical practice, especially in molecular integrity and possible DNA alteration if present for IVM offspring outcome safety purposes.
  3. Lazim N, Elias MH, Sutaji Z, Abdul Karim AK, Abu MA, Ugusman A, et al.
    Int J Mol Sci, 2023 Aug 17;24(16).
    PMID: 37629050 DOI: 10.3390/ijms241612869
    The homeobox A10 (HOXA10) gene is known to be related to endometriosis; however, due to a lack of knowledge/evidence in the pathogenesis of endometriosis, the mechanisms that link HOXA10 to endometriosis still need to be clarified. This review addresses the difference in the expression of the HOXA10 gene in endometriotic women versus non-endometriotic women across populations by country and discusses its influences on women's fertility. An organized search of electronic databases was conducted in Scopus, ScienceDirect, PubMed, and Web of Science. The keywords used were (HOXA10 OR "homeobox A10" OR PL OR HOX1 OR HOX1H OR HOX1.8) AND ("gene expression") AND (endometriosis). The initial search resulted in 623 articles, 10 of which were included in this review. All ten papers included in this study were rated fair in terms of the quality of the studies conducted. The expression of the HOXA10 gene was found to be downregulated in most studies. However, one study provided evidence of the downregulation and upregulation of HOXA10 gene expression due to the localization of endometriotic lesions. Measuring the expression of the HOXA10 gene in women is clinically essential to predicting endometriosis, endometrial receptivity, and the development of pinopodes in the endometrium during the luteal phase.
  4. Suhaimi SS, Ab Mutalib NS, Khor SS, Zain RRM, Syafruddin SE, Abu N, et al.
    Front Pharmacol, 2018;9:750.
    PMID: 30057548 DOI: 10.3389/fphar.2018.00750
    Endometrioid endometrial cancer (EEC) is the commonest form of endometrial cancer and can be divided into estrogen receptor (ER) positive and negative subtypes. The mutational profiles of EEC have been shown to aid in tailoring treatment; however, little is known about the differences between the gene mutation profiles between these two subtypes. This study aims to investigate the gene mutation profile in ER positive and negative EEC, and to further elucidate the role of WHSC1 mutations in this cancer. EEC and normal endometrial tissues were obtained from 29 patients and subjected to next-generation sequencing (NGS) using Ion Ampliseq Comprehensive Cancer PanelTM targeting 409 cancer related. A total of 741 non-synonymous alterations were identified from 272 genes in ER positive subtype while 448 non-synonymous variants were identified from 221 genes in ER negative subtype. PTEN is the most frequently altered gene in ER positive subtype (64%, 7/11) while ARID1A is the most frequently altered gene in ER negative subtype (50%, 4/8). We also identified alterations in ERRB3 (36%, 4/11), GNAS (36%, 4/11), and WHSC1 (27%, 3/11) in the ER positive subtype. WHSC1 R1126H and L1268P were shown to significantly increase cell viability, proliferation, migration, and survival. In addition, reduction in ER expression sensitized EEC-1 cell with WHSC1 L1268P mutant to Fulvestrant treatment. We revealed the mutational spectra of ER positive and ER negative EEC that could lead to better understanding of the biological mechanisms of endometrial cancer and may ultimately result in improvement of treatment options and patient prognosis.
  5. Mohd Isa NI, Syafruddin SE, Mokhtar MH, Zainal Abidin S, Jaffar FHF, Ugusman A, et al.
    Int J Mol Sci, 2023 Nov 28;24(23).
    PMID: 38069164 DOI: 10.3390/ijms242316842
    Pre-eclampsia, which is part of the spectrum of hypertensive pregnancy disorders, poses a significant health burden, contributing to maternal and infant morbidity and mortality. Pre-eclampsia is widely associated with persistent adverse effects on the cardiovascular health of women with a history of pre-eclampsia. Additionally, there is increasing evidence demonstrating that offspring of pre-eclamptic pregnancies have altered cardiac structure and function, as well as different vascular physiology due to the decrease in endothelial function. Therefore, early detection of the likelihood of developing pre-eclampsia-associated cardiovascular diseases is vital, as this could facilitate the undertaking of the necessary clinical measures to avoid disease progression. The utilisation of microRNAs as biomarkers is currently on the rise as microRNAs have been found to play important roles in regulating various physiological and pathophysiological processes. In regard to pre-eclampsia, recent studies have shown that the expression of microRNAs is altered in postpartum women and their offspring who have been exposed to pre-eclampsia, and that these alterations may persist for several years. This review, therefore, addresses changes in microRNA expression found in postpartum women and offspring exposed to pre-eclampsia, their involvement in cardiovascular disease, and the potential role of microRNAs to be used as predictive tools and therapeutic targets in future cardiovascular disease research.
  6. Azizan S, Cheng KJ, Mejia Mohamed EH, Ibrahim K, Faruqu FN, Vellasamy KM, et al.
    Gene, 2024 Feb 20;896:148057.
    PMID: 38043836 DOI: 10.1016/j.gene.2023.148057
    Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.
  7. Mardina V, Ilyas S, Halimatussakdiah H, Harmawan T, Tanjung M, Yusof F
    J Adv Pharm Technol Res, 2021 07 16;12(3):222-226.
    PMID: 34345598 DOI: 10.4103/japtr.JAPTR_131_21
    This study aims to investigate the potential of bioactive secondary metabolites contained in Sphagneticola trilobata (L.) J.F Pruski leaves as novel plant-derived anticancer agent. Qualitative bioactive compound contents in the methanolic extract of S. trilobata leaves were screened using phytochemical method. Antioxidant evaluation was carried out using 2,2-diphenyl-1-picrylhydrazyl assay; antibacterial - using well diffusion method on Escherichia coli and Salmonella typhi; and cytotoxicity - using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on MCF-7 cell line and Vero Cell. It was found that the methanolic extract exhibited antioxidant activity with an IC50 value of 124.34 μg/mL. The inhibition zone values against E. coli and S. thypi (at extract concentration of 100 mg/mL) were 34.33 and 36 mm, respectively. In vitro MTT assay showed that our extract successfully reached 96% mortality with LC50 = 189.287 μg/mL, where the selective index of 2.5 suggest its selectivity against MCF-7 breast cancer cell line. In conclusion, the data of biological activities suggest the potential development of methanolic extract from S. trilobata leaves as a phytomedicine for breast cancer treatment.
  8. Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, et al.
    Nat Commun, 2019 03 11;10(1):1152.
    PMID: 30858363 DOI: 10.1038/s41467-019-09116-x
    Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.
  9. Abdullah N, Abdul Murad NA, Mohd Haniff EA, Syafruddin SE, Attia J, Oldmeadow C, et al.
    Public Health, 2017 Aug;149:31-38.
    PMID: 28528225 DOI: 10.1016/j.puhe.2017.04.003
    OBJECTIVE: Malaysia has a high and rising prevalence of type 2 diabetes (T2D). While environmental (non-genetic) risk factors for the disease are well established, the role of genetic variations and gene-environment interactions remain understudied in this population. This study aimed to estimate the relative contributions of environmental and genetic risk factors to T2D in Malaysia and also to assess evidence for gene-environment interactions that may explain additional risk variation.
    STUDY DESIGN: This was a case-control study including 1604 Malays, 1654 Chinese and 1728 Indians from the Malaysian Cohort Project.
    METHODS: The proportion of T2D risk variance explained by known genetic and environmental factors was assessed by fitting multivariable logistic regression models and evaluating McFadden's pseudo R(2) and the area under the receiver-operating characteristic curve (AUC). Models with and without the genetic risk score (GRS) were compared using the log likelihood ratio Chi-squared test and AUCs. Multiplicative interaction between genetic and environmental risk factors was assessed via logistic regression within and across ancestral groups. Interactions were assessed for the GRS and its 62 constituent variants.
    RESULTS: The models including environmental risk factors only had pseudo R(2) values of 16.5-28.3% and AUC of 0.75-0.83. Incorporating a genetic score aggregating 62 T2D-associated risk variants significantly increased the model fit (likelihood ratio P-value of 2.50 × 10(-4)-4.83 × 10(-12)) and increased the pseudo R(2) by about 1-2% and AUC by 1-3%. None of the gene-environment interactions reached significance after multiple testing adjustment, either for the GRS or individual variants. For individual variants, 33 out of 310 tested associations showed nominal statistical significance with 0.001 
  10. Abdul SN, Ab Mutalib NS, Sean KS, Syafruddin SE, Ishak M, Sagap I, et al.
    Front Pharmacol, 2017;8:465.
    PMID: 28769798 DOI: 10.3389/fphar.2017.00465
    Despite global progress in research, improved screening and refined treatment strategies, colorectal cancer (CRC) remains as the third most common malignancy. As each type of cancer is different and exhibits unique alteration patterns, identifying and characterizing gene alterations in CRC that may serve as biomarkers might help to improve diagnosis, prognosis and predict potential response to therapy. With the emergence of next generation sequencing technologies (NGS), it is now possible to extensively and rapidly identify the gene profile of individual tumors. In this study, we aimed to identify actionable somatic alterations in Dukes' B and C in CRC via NGS. Targeted sequencing of 409 cancer-related genes using the Ion Ampliseq(TM) Comprehensive Cancer Panel was performed on genomic DNA obtained from paired fresh frozen tissues, cancer and normal, of Dukes' B (n = 10) and Dukes' C (n = 9) CRC. The sequencing results were analyzed using Torrent Suite, annotated using ANNOVAR and validated using Sanger sequencing. A total of 141 somatic non-synonymous sequence variations were identified in 86 genes. Among these, 64 variants (45%) were predicted to be deleterious, 38 variants (27%) possibly deleterious while the other 39 variants (28%) have low or neutral protein impact. Seventeen genes have alterations with frequencies of ≥10% in the patient cohort and with 14 overlapped genes in both Dukes' B and C. The adenomatous polyposis coli gene (APC) was the most frequently altered gene in both groups (n = 6 in Dukes' B and C). In addition, TP53 was more frequently altered in Dukes' C (n = 7) compared to Dukes' B (n = 4). Ten variants in APC, namely p.R283(∗), p.N778fs, p.R805(∗), p.Y935fs, p.E941fs, p.E1057(∗), p.I1401fs, p.Q1378(∗), p.E1379(∗), and p.A1485fs were predicted to be driver variants. APC remains as the most frequently altered gene in the intermediate stages of CRC. Wnt signaling pathway is the major affected pathway followed by P53, RAS, TGF-β, and PI3K signaling. We reported the alteration profiles in each of the patient which has the potential to affect the clinical decision. We believe that this study will add further to the understanding of CRC molecular landscape.
  11. Nor Azian Abdul Murad, Saiful Effendi Syafruddin, Muhiddin Ishak, Mohd Ridhwan Abdul Razak, Sri Noraima Othman, Soon, Bee Hong, et al.
    MyJurnal
    Glioma is the most common primary brain tumour of the central nervous system. Many genetic alterations
    and mutations have been identified in glioma using various approaches. We performed DNA sequencing on
    the tumours of 16 patients with Grade I, II, III and IV glioma. The AmpliSeq Cancer Primers Pool was used
    to generate the amplicons. The targeted-ion sphere particles were prepared using the Ion One Touch and
    Ion Enrichment systems. DNA sequencing was performed on the Ion Torrent Personal Genome Machine
    (PGM) and the data were analysed using the Torrent Suite Software.
    In total, 14 mutations were identified in the following genes: KDR (Q472H), MLH1 (V384D), MET (N375S),
    PTPN11 (E69K), BRAF (V600E), TP53 (D149E, E154K, V157F), IDH1 (R132H), PIK3CA (H1047R), CSF1R
    (c1061_1061 ins A), KIT (M541L), PTEN (c1373_1373 del A) and PDGFRA (E556V). In addition, there were
    four novel mutations identified; TP53 (E154K, and D149E), CSF1R (c1061_1061 ins A) and PDGFRA
    (E556V). The pathogenicity prediction showed that only three mutations were pathogenic: PTPN11 (E69K),
    BRAF (V600E) and Tp53 (E154K). These mutations result in changes of the proteins’ structure and could
    affect their functions. Pathway analyses suggested that these genes are closely related to the pathogenesis of
    GBM through several pathways such as proliferation and invasion, metabolism and angiogenesis.
    In conclusion, PGM in combination with the AmpliSeq Cancer Panel could be utilised as a potential
    molecular diagnostic tool not only for glioma but also for other cancers.
  12. Mohd Yunos RI, Ab Mutalib NS, Khoo JS, Saidin S, Ishak M, Syafruddin SE, et al.
    Front Mol Biosci, 2022;9:997747.
    PMID: 36866106 DOI: 10.3389/fmolb.2022.997747
    The incidences of colorectal cancer (CRC) are continuously increasing in some areas of the world, including Malaysia. In this study, we aimed to characterize the landscape of somatic mutations using the whole-genome sequencing approach and identify druggable somatic mutations specific to Malaysian patients. Whole-genome sequencing was performed on the genomic DNA obtained from 50 Malaysian CRC patients' tissues. We discovered the top significantly mutated genes were APC, TP53, KRAS, TCF7L2 and ACVR2A. Four novel, non-synonymous variants were identified in three genes, which were KDM4E, MUC16 and POTED. At least one druggable somatic alteration was identified in 88% of our patients. Among them were two frameshift mutations in RNF43 (G156fs and P192fs) predicted to have responsive effects against the Wnt pathway inhibitor. We found that the exogenous expression of this RNF43 mutation in CRC cells resulted in increased cell proliferation and sensitivity against LGK974 drug treatment and G1 cell cycle arrest. In conclusion, this study uncovered our local CRC patients' genomic landscape and druggable alterations. It also highlighted the role of specific RNF43 frameshift mutations, which unveil the potential of an alternative treatment targeting the Wnt/β-Catenin signalling pathway and could be beneficial, especially to Malaysian CRC patients.
  13. Syafruddin D, Lestari YE, Permana DH, Asih PBS, St Laurent B, Zubaidah S, et al.
    PLoS Negl Trop Dis, 2020 Jul;14(7):e0008385.
    PMID: 32614914 DOI: 10.1371/journal.pntd.0008385
    Anopheles sundaicus s.l. is an important malaria vector primarily found in coastal landscapes of western and central Indonesia. The species complex has a wide geographical distribution in South and Southeast Asia and exhibits ecological and behavioural variability over its range. Studies on understanding the distribution of different members in the complex and their bionomics related to malaria transmission might be important guiding more effective vector intervention strategies. Female An. sundaicus s.l. were collected from seven provinces, 12 locations in Indonesia representing Sumatra: North Sumatra, Bangka-Belitung, South Lampung, and Bengkulu; in Java: West Java; and the Lesser Sunda Islands: West Nusa Tenggara and East Nusa Tenggara provinces. Sequencing of ribosomal DNA ITS2 gene fragments and two mitochondrial DNA gene markers, COI and cytb, enabled molecular identification of morphologically indistinguishable members of the complex. Findings allowed inference on the distribution of the An. sundaicus s.l. present in Indonesia and further illustrate the phylogenetic relationships of An. epiroticus within the complex. A total of 370 An. sundaicus s.l specimens were analysed for the ITS2 fragment. The ITS2 sequence alignment revealed two consistent species-specific point mutations, a T>C transition at base 479 and a G>T transversion at base 538 that differentiated five haplotypes: TG, CG, TT, CT, and TY. The TG haplotype matched published An. epiroticus-indicative sequences from Thailand, Vietnam and peninsular Malaysia. The previously described insertion event (base 603) was observed in all identified specimens. Analysis of the COI and cytb genes revealed no consistent nucleotide variations that could definitively distinguish An. epiroticus from other members in the Sundaicus Complex. The findings indicate and support the existence of An. epiroticus in North Sumatra and Bangka-Belitung archipelago. Further studies are recommended to determine the full distributional extent of the Sundaicus complex in Indonesia and investigate the role of these species in malaria transmission.
  14. Rodrigues P, Patel SA, Harewood L, Olan I, Vojtasova E, Syafruddin SE, et al.
    Cancer Discov, 2018 Jul;8(7):850-865.
    PMID: 29875134 DOI: 10.1158/2159-8290.CD-17-1211
    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states.Significance: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 850-65. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.
  15. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005546.
    PMID: 28410388 DOI: 10.1371/journal.pntd.0005546
    BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range.

    METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.

    CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.

  16. Thriemer K, Bobogare A, Ley B, Gudo CS, Alam MS, Anstey NM, et al.
    Malar J, 2018 Jun 20;17(1):241.
    PMID: 29925430 DOI: 10.1186/s12936-018-2380-8
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links