Displaying publications 21 - 40 of 55 in total

Abstract:
Sort:
  1. Zalota AK, Savchenko AS, Miroliubov AA, Waiho K, Fazhan H, Chan BKK, et al.
    Zoology (Jena), 2024 Nov 29;168:126234.
    PMID: 39626403 DOI: 10.1016/j.zool.2024.126234
    Coral reefs house a great variety of symbiotic associations, including parasitism. One of the crucial issues in the host-symbiont interactions is the parasites' feeding mode. Does the parasite/symbiont use the host's tissues for nutrition, steal food from the host's digestive system, or take food directly from the environment? However, most of the parasitism in corals is endosymbiotic (endoparasitic). Their trophic interactions are difficult to identify since they only occur in intact associations. This work uses stable isotope analysis (SIA) of carbon and nitrogen and morphological analysis to study the trophic relationship between the crustacean endoparasites, the Ascothoracida (genera Baccalaureus, Sessilogoga, and Zibrowia) and their various coral hosts ranging from Zoantharia (Palythoa) to Antipatharia (Antipathes), and Scleractinia (Dendrophyllia). The hosts belong to different coral taxa and obtain food from different sources, reflected in their stable isotope values. The SIA, supported by the morphological analysis, suggests that the Zibrowia parasite feeds directly on its Dendrophyllia host. Sessilogoga retains vagility within and around the black coral colony. It has typical generalized piercing mouth parts with numerous teeth and denticles. Sessilogoga may use antipatharian tissues for food directly as well as sucks food fluids from the host's gastrovascular system. There is no clear trophic shift trend between Palythoa and its parasite Baccalaureus. Such differences exclude the possibility of the parasite feeding predominantly on its host's tissues and suggest a broad spectrum of food sources. Thus, SIA reveals that endosymbiotic ascothoracidans may not always be true parasitic but also opportunistic feeders, which steal food directly from the host gastric cavity.
  2. Asmat-Ullah M, Rozaimi R, Fazhan H, Shu-Chien AC, Wang Y, Waiho K
    J Vis Exp, 2023 Mar 31.
    PMID: 37067269 DOI: 10.3791/65039
    Mud crabs (Scylla spp.) are commercially important crustacean species that can be found throughout the Indo-West Pacific region. During culture, the induction of ovarian maturation is important to meet the consumer demand for mature mud crabs and hasten seed production. Eyestalk ablation is an effective tool to enhance ovarian maturation in mud crabs. However, there is no standard protocol for the eyestalk ablation of mud crabs. In this study, two eyestalk ablation techniques are described: cauterization (the use of hot metal to ablate the eyestalk of an anesthetized crab) and surgery (the removal of the eyestalk using surgical scissors). Before eyestalk ablation, sexually mature females (CW > 86 mm) were anesthetized using an ice bag (-20 °C) with seawater. When the water temperature reached 4 °C, the ice bag was removed from the water. Flowing seawater (ambient temperature: 28 °C) was used for recovery from the anesthesia immediately after eyestalk ablation. Mortality did not occur during or after the process of eyestalk ablation. The eyestalk ablation protocol presented here accelerated the ovarian maturation of the mud crabs.
  3. Fang S, Zhang Y, Shi X, Zheng H, Li S, Zhang Y, et al.
    Genomics, 2020 01;112(1):404-411.
    PMID: 30851358 DOI: 10.1016/j.ygeno.2019.03.003
    In this study, we first identified male-specific SNP markers using restriction site-associated DNA sequencing, and further developed a PCR-based sex identification technique for Charybdis feriatus. A total of 296.96 million clean reads were obtained, with 114.95 and 182.01 million from females and males. After assembly and alignment, 10 SNP markers were identified being heterozygous in males but homozygous in females. Five markers were further confirmed to be male-specific in a large number of individuals. Moreover, two male-specific sense primers and a common antisense primer were designed, using which, a PCR-based genetic sex identification method was successfully developed and used to identify the sex of 103 individuals, with a result of 49 females and 54 males. The presence of male-specific SNP markers suggests an XX/XY sex determination system for C. feriatus. These findings should be helpful for better understanding sex determination mechanism, and drafting artificial breeding program in crustaceans.
  4. Waiho K, Shi X, Fazhan H, Li S, Zhang Y, Zheng H, et al.
    Front Genet, 2019;10:298.
    PMID: 31024620 DOI: 10.3389/fgene.2019.00298
    Mud crab, Scylla paramamosain is one of the most important crustacean species in global aquaculture. To determine the genetic basis of sex and growth-related traits in S. paramamosain, a high-density genetic linkage map with 16,701 single nucleotide polymorphisms (SNPs) was constructed using SLAF-seq and a full-sib family. The consensus map has 49 linkage groups, spanning 5,996.66 cM with an average marker-interval of 0.81 cM. A total of 516 SNP markers, including 8 female-specific SNPs segregated in two quantitative trait loci (QTLs) for phenotypic sex were located on LG32. The presence of female-specific SNP markers only on female linkage map, their segregation patterns and lower female: male recombination rate strongly suggest the conformation of a ZW/ZZ sex determination system in S. paramamosain. The QTLs of most (90%) growth-related traits were found within a small interval (25.18-33.74 cM) on LG46, highlighting the potential involvement of LG46 in growth. Four markers on LG46 were significantly associated with 10-16 growth-related traits. BW was only associated with marker 3846. Based on the annotation of transcriptome data, 11 and 2 candidate genes were identified within the QTL regions of sex and growth-related traits, respectively. The newly constructed high-density genetic linkage map with sex-specific SNPs, and the identified QTLs of sex- and growth-related traits serve as a valuable genetic resource and solid foundation for marker-assisted selection and genetic improvement of crustaceans.
  5. Syafaat MN, Azra MN, Waiho K, Fazhan H, Abol-Munafi AB, Ishak SD, et al.
    Animals (Basel), 2021 Jul 08;11(7).
    PMID: 34359163 DOI: 10.3390/ani11072034
    The nursery stages of mud crab, genus Scylla, proceed from the megalopa stage to crablet instar stages. We review the definition and several of the key stages in mud crab nursery activities. The practice of the direct stocking of megalopa into ponds is not recommended due to their sensitivity. Instead, nursery rearing is needed to grow-out mud crabs of a larger size before pond stocking. Individual nursery rearing results in a higher survival rate at the expense of growth and a more complicated maintenance process compared with communal rearing. The nursery of mud crabs can be done both indoors or outdoors with adequate shelter and feed required to obtain a good survival percentage and growth performance. Artemia nauplii are still irreplaceable as nursery feed, particularly at the megalopa stage, while the survival rate may be improved if live feed is combined with artificial feed such as microbound diet formulations. Water quality parameters, identical to those proposed in tiger shrimp cultures, can be implemented in mud crab rearing. The transportation of crablets between different locations can be done with or without water. The provision of monosex seeds from mud crab hatcheries is expected to become commonplace, increasing seed price and thus improving the income of farmers. Numerous aspects of a mud crab nursery including nutrition; feeding strategies; understanding their behaviour, i.e., cannibalism; control of environmental factors and practical rearing techniques still need further improvement.
  6. Waiho K, Fazhan H, Zhang Y, Afiqah-Aleng N, Moh JHZ, Ikhwanuddin M, et al.
    Genomics, 2020 09;112(5):2959-2969.
    PMID: 32437851 DOI: 10.1016/j.ygeno.2020.05.007
    Infection by the rhizocephalan parasite Sacculina beauforti can have detrimental effects on mud crab Scylla olivacea. However, the molecular changes that occur during rhizocephalan infection are poorly understood. Due to the disruption in the reproductive system after infection, the gonadal transcriptomic profiles of non-infected and infected Scylla olivacea were compared. A total of 686 and 843 unigenes were differentially expressed between non-infected and infected males, and females, respectively. The number of DEGs increased after infection. By comparing shared DEGs of non-infected and infected individuals, potential immune- and reproduction-related of host, and immune- and metabolism-related genes of parasite are highlighted. The only shared KEGG pathway between non-infected and infected individuals was the ribosome pathway. In summary, findings in this study provide new insights into the host-parasite relationship of rhizocephalan parasites and their crustacean hosts.
  7. Yee CS, Okomoda VT, Hashim F, Waiho K, Sheikh Abdullah SR, Alamanjo C, et al.
    PeerJ, 2021;9:e11217.
    PMID: 33981498 DOI: 10.7717/peerj.11217
    This study investigated the effect of co-culturing microalgae with a floc-forming bacterium. Of the six microalgae isolated from a biofloc sample, only Thalassiosira weissflogii, Chlamydomonas sp. and Chlorella vulgaris were propagated successfully in Conway medium. Hence, these species were selected for the experiment comparing microalgae axenic culture and co-culture with the floc-forming bacterium, Bacillus infantis. Results obtained showed that the co-culture had higher microalgae biomass compared to the axenic culture. A similar trend was also observed concerning the lipid content of the microalgae-bacterium co-cultures. The cell number of B. infantis co-cultured with T. weissflogii increased during the exponential stage until the sixth day, but the other microalgae species experienced a significant early reduction in cell density of the bacteria at the exponential stage. This study represents the first attempt at co-culturing microalgae with B. infantis, a floc-forming bacterium, and observed increased biomass growth and lipid accumulation compared to the axenic culture.
  8. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
  9. Fazhan H, Waiho K, Quinitio E, Baylon JC, Fujaya Y, Rukminasari N, et al.
    PeerJ, 2020;8:e8066.
    PMID: 31915566 DOI: 10.7717/peerj.8066
    There are four species of mud crabs within the genus Scylla, and most of them live sympatrically in the equatorial region. Apart from a report in Japan about the finding of a natural Scylla hybrid more than a decade ago after the division of genus Scylla into four species by Keenan, Davie & Mann (1998), no subsequent sighting was found. Thus, this study investigates the possible natural occurrence of potential hybridization among Scylla species in the wild. A total of 76,211 individuals from mud crab landing sites around the Malacca Straits, South China Sea and Sulu Sea were screened. In addition to the four-purebred species, four groups (SH 1, n = 2, 627; SH 2, n = 136; SH 3, n = 1; SH 4, n = 2) with intermediate characteristics were found, mostly at Sulu Sea. Discriminant Function Analysis revealed that all Scylla species, including SH 1 - 4, are distinguishable via their morphometric ratios. The most powerful discriminant ratios for each character and the top five discriminant ratios of males and females were suggested. The carapace width of SH 1 males and females were significantly smaller than pure species. Based on the discriminant ratios and the description of morphological characters, we hypothesize that the additional four groups of Scylla with intermediate characteristics could be presumed hybrids. Future work at the molecular level is urgently needed to validate this postulate.
  10. Chen X, Huang W, Liu C, Song H, Waiho K, Lin D, et al.
    Sci Total Environ, 2023 Jan 11.
    PMID: 36640886 DOI: 10.1016/j.scitotenv.2023.161456
    With the development of industry, agriculture and intensification of human activities, a large amount of nano-TiO2 dioxide and pentachlorophenol have entered aquatic environment, causing potential impacts on the health of aquatic animals and ecosystems. We investigated the effects of predators, pentachlorophenol (PCP) and nano titanium dioxide (nano-TiO2) on the gut health (microbiota and digestive enzymes) of the thick-shelled mussel Mytilus coruscus. Nano-TiO2, as the photocatalyst for PCP, enhanced to toxic effects of PCP on the intestinal health of mussels, and they made the mussels more vulnerable to the stress from predators. Nano-TiO2 particles with smaller size exerted a larger negative effect on digestive enzymes, whereas the size effect on gut bacteria was insignificant. The presence of every two of the three factors significantly affected the population richness and diversity of gut microbiota. Our findings revealed that the presence of predators, PCP, and nano-TiO2 promoted the proliferation of pathogenic bacteria and inhibited digestive enzyme activity. This research investigated the combined stress on marine mussels caused by nanoparticles and pesticides in the presence of predators and established a theoretical framework for explaining the adaptive mechanisms in gut microbes and the link between digestive enzymes and gut microbiota.
  11. Rozaimi R, Shu-Chien AC, Wang Y, Sutikno S, Ikhwanuddin M, Shi X, et al.
    PeerJ, 2023;11:e15143.
    PMID: 37033733 DOI: 10.7717/peerj.15143
    Asymmetric body traits in bilateral organisms are common and serve a range of different functions. In crustaceans, specifically among brachyuran crabs, heterochely and handedness in some species are known to aid in behavioural responses such as food acquisition, and sexual and territorial displays. However, the heterochely of the intertidal mud crab genus Scylla is still poorly understood. This study investigated the cheliped morphometric characteristics of orange mud crab Scylla olivacea and the relation of heterochely and handedness to sex. Scylla olivacea is heterochelous, with predominant right-handed (70.2%). Three morphometric variables, i.e., propodus length (PL), propodus depth (PD), and propodus width (PW) were significantly larger in the right cheliped and the estimated handedness based on these three variables were consistent with the presence of molariform teeth. The effect of sex had no influence on the occurrence of heterochely or handedness. The frequency of left-handedness increased with size, especially in males. We postulate that handedness reversal, a phenomenon seen in other crab species when the dominant hand is lost, also occurs in S. olivacea, thereby resulting in a change in left-handedness frequency. The use of chelipeds by males in mate and territorial defenses might provide an explanation for the higher risk of losing a dominant cheliped and thus, higher left-handedness frequency compared to females. Future behavioural research could shed light on the selective forces that affect the handedness distribution in mud crabs. Knowledge on heterochely and handedness of mud crabs could be useful for future development of less aggressive crab populations by claw reversal and the optimisation of limb autotomy techniques.
  12. Tan K, Waiho K, Tan K, Qiao Y, Lim LS, Yang X, et al.
    Biochem Biophys Res Commun, 2023 Oct 30;679:66-74.
    PMID: 37673004 DOI: 10.1016/j.bbrc.2023.08.066
    Vitellogenin (Vtg) serves as the precursor of yolk protein and exhibits widespread distribution in tissues, including in the ovary of both vertebrates and invertebrates. Vtg plays a critical role in facilitating oocyte maturation and embryonic development following oviposition. In this study, we have successfully elucidated the complete transcript sequence of TtVtg6-like from an ancient chelicerate Tachypleus tridentatus. The TtVtg6-like transcript encompassed a length of 4887 bp and encoded 1629 amino acids residues. Notably, TtVtg6-like was found to contain 25 exons. Furthermore, the molecular weight and isoelectric point of TtVtg6-like were determined to be 191.6 KDa and 6.73, respectively. Subsequent mRNA expression analysis demonstrated the specific expression of TtVtg6-like in ovary and yellow connective tissue. In addition, TtVtg6-like was located and distributed in both ovary and yellow connective tissue. Intriguingly, employing an siRNA approach to silence TtVtg6-like resulted in a decrease in TtVtg6-like transcription levels. Concomitantly, TtVtg6-like silencing led to increase production of ROS, ultimately resulting in DNA damage and cell apoptosis within the ovarian primary cell. The induction of apoptosis ovarian primary cells due to TtVtg6-like silencing was further corroborated through TUNEL assay and flow cytometry analysis. Overall, our findings underscore the significance of TtVtg6-like in ovarian cell development, revealing its potential association with ovarian cell apoptosis. Consequently, the insights gained from this study contribute to the future exploration of vitellogenesis and ovarian development in T. tridentatus.
  13. Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, et al.
    J Hazard Mater, 2024 Apr 15;468:133801.
    PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801
    Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
  14. Lau NS, Ting SY, Sam KK, M J, Wong SC, Wu X, et al.
    Microb Ecol, 2023 Jul;86(1):575-588.
    PMID: 35618944 DOI: 10.1007/s00248-022-02046-0
    Although numerous studies in aquatic organisms have linked lipid metabolism with intestinal bacterial structure, the possibility of the gut microbiota participating in the biosynthesis of beneficial long-chain polyunsaturated fatty acid (LC-PUFA) remains vague. We profiled the gut microbiota of the mud crab Scylla olivacea fed with either a LC-PUFA rich (FO) or a LC-PUFA-poor but C18-PUFA substrate-rich (LOCO) diet. Additionally, a diet with a similar profile as LOCO but with the inclusion of an antibiotic, oxolinic acid (LOCOAB), was also used to further demarcate the possibility of LC-PUFA biosynthesis in gut microbiota. Compared to diet FO treatment, crabs fed diet LOCO contained a higher proportion of Proteobacteria, notably two known taxonomy groups with PUFA biosynthesis capacity, Vibrio and Shewanella. Annotation of metagenomic datasets also revealed enrichment in the KEGG pathway of unsaturated fatty acid biosynthesis and polyketide synthase-like system sequences with this diet. Intriguingly, diet LOCOAB impeded the presence of Vibrio and Shewanella and with it, the function of unsaturated fatty acid biosynthesis. However, there was an increase in the function of short-chain fatty acid production, accompanied by a shift towards the abundance of phyla Bacteroidota and Spirochaetota. Collectively, these results exemplified bacterial communities and their corresponding PUFA biosynthesis pathways in the microbiota of an aquatic crustacean species.
  15. Fujaya Y, Hidayani AA, Sari DK, Aslamyah S, Rukminasari N, Muthalib A, et al.
    Trop Life Sci Res, 2023 Jun;34(2):39-56.
    PMID: 38144381 DOI: 10.21315/tlsr2023.34.2.3
    Owing to their availability, cost effectiveness and environmental-friendly nature, plant extracts are promising additives for fish farming. This study aims to determine the optimal dosage of fermented herbal extract (FHE)-composed of Morus alba (33.3%), Curcuma xanthorrhiza (33.3%), and Boesenbergia rotunda (33.3%)-for growth enhancement and feed utilisation efficiency of Oreochromis niloticus fingerlings. Fermentation was conducted using probiotics Lactobacillus casei (Yakult®, Tokyo, Japan) and Saccharomyces cereviceae (commercial baker's yeast). The FHE was high in flavonoid and alkaloid, vitamin C, potassium, natrium, lipase and protease. Four doses of FHE treatments, namely treatment A (0 mg/kg of feed); treatment B (100 mg/kg of feed); treatment C (300 mg/kg of feed); treatment D (500 mg/kg of feed) were compared. After subjected to 35 days of culture, tilapias subjected to FHE-coated feed exhibited better weight gain (WG), specific growth rate (SGR), and feed efficiency (FE) compared to control. The best dosage that gave the highest growth and feed efficiency was treatment C (300 mg/kg of feed). Furthermore, the feed efficiencies of FHE-incorporated treatments were positively influenced by the increased in length and density of intestinal villi, number of goblet cells, lymphocytes, as well as nutrient retention to support growth. The results of this study indicate that FHE is a promising functional feed additive to stimulate growth and improve feed efficiency in tilapia farming.
  16. Sun B, Hu M, Bock C, Shao Y, Chen H, Waiho K, et al.
    Chemosphere, 2025 Feb;370:143958.
    PMID: 39701318 DOI: 10.1016/j.chemosphere.2024.143958
    Perfluorooctanoic acid (PFOA) functions as a surfactant, while nano-titanium dioxide (nano-TiO2) serves as an antibacterial agent. These substances are extensively utilized in industrial production and, upon release into aquatic environments, pose significant threats to the viability and development of marine organisms. However, research into the effects of PFOA and nano-TiO2 on the immune functions and cellular energy allocation (CEA) of bivalves remains limited. To investigate the impact of PFOA and nano-TiO2 on immunity and cellular energy, we exposed Mytilus coruscus individuals to different concentrations of PFOA (2 and 200 μg/L), either alone or in combination with nano-TiO2 (0.1 mg/L, particle size: 25 nm) for 14 days. We found that the co-exposure to PFOA and nano-TiO2 had significant interactive effects on multiple immune function parameters of mussels. PFOA and nano-TiO2 notably reduced the total hemocyte count (THC), esterase activity (EST), mitochondrial number (MN), lysosomal content (LYSO), and cell viability, while concurrently elevating hemocyte mortality (HM) and reactive oxygen species (ROS) levels. Some immune-related genes, such as Tumor Necrosis Factor-alpha (TNF-α) and Myeloid Differentiation Primary Response 88 (MyD88) were downregulated, while others such as Interleukin 17 (IL-17) and Transforming Growth Factor-beta (TGF-β) were upregulated after 14-day exposure to combined pollutant exposure. Furthermore, negative effects on CEA were observed under both individual and combined pollutant stress. Therefore, PFOA and nano-TiO2 regulate cellular and humoral immunity through the regulation of immune genes as mediators, while simultaneously disrupting cellular energy metabolism. The immunotoxicity of organic and particulate pollutants, and their mixtures, thus poses a significant risk to the immune defense capabilities of mussel populations in polluted coastal environments.
  17. Zakaria NH, Abd Rahim NDE, Rosilan NF, Sung YY, Waiho K, Harun S, et al.
    World J Microbiol Biotechnol, 2025 Jan 23;41(2):45.
    PMID: 39843643 DOI: 10.1007/s11274-025-04262-5
    Vibrio parahaemolyticus poses a notable threat to marine ecosystems and can cause infections and disease outbreaks in seafood species, which can affect humans upon consumption. The global impacts of such infections and outbreaks on human and animal health led to a growing number of studies from various countries discussing the prevention, control, treatment, and overall implications of V. parahaemolyticus. Hence, this study aims to retrieve relevant studies on V. parahaemolyticus using a bibliometric analysis to understand current research status, trends, and hotspots regarding this bacteria. Relevant literature was searched across the Scopus database, and the data were subsequently analyzed using Biblioshiny software. In addition, a manual examination was conducted to identify the hosts of V. parahaemolyticus and diseases caused by the bacteria. Overall, 7,096 records were obtained from Scopus from 1963 to 2023. A bibliometric analysis identified 17,220 authors, with China emerging as the global leader. The analysis also highlighted significant keywords such as "Vibrio parahaemolyticus," "Litopenaeus vannamei," and "innate immunity," suggesting a focus on the impact of V. parahaemolyticus on L. vannamei, specifically emphasizing the shrimp's innate immune responses. Host-disease interaction network also uncovered 53 interactions between hosts and diseases involving L. vannamei or Penaeus vannamei as the primary host, with acute hepatopancreas necrosis disease (AHPND) emerging as the most prevalent among them. This study can enhance our understanding of infections caused by V. parahaemolyticus and contribute to the development of effective strategies for their prevention and management.
  18. Mohamad S, Liew HJ, Zainuddin RA, Rahmah S, Waiho K, Ghaffar MA, et al.
    J Fish Biol, 2021 Jul;99(1):206-218.
    PMID: 33629400 DOI: 10.1111/jfb.14712
    Climate warming and low pH environment are known to negatively impact all levels of aquatic organism from cellular to organism and population levels. For ammonotelic freshwater species, any abiotic factor fluctuation will cause disturbance to the fish, specifically at the gills which act as a multifunctional organ to support all biological processes. Therefore, this study was designed to investigate the effect of temperature (28 vs. 32°C) and pH (7.0 vs. 5.0) stress on the gill plasticity of Hoven's carp after 20 days of continuous exposure. The results demonstrated that high temperature and low pH caused severe changes on the primary and secondary lamellae as well as the cells within lamellae. An increasing trend of the proportion available for gas exchange was noticed at high temperature in both pH exposures, which resulted from a reduction of the primary lamellae width with elongated and thinner secondary lamellae compared to fishes at ambient temperature. Following exposure to high temperature and acidic pH, Hoven's carp experienced gill modifications including aneurysm, oedema, hypertrophy, curling of secondary lamellae, epithelial lifting, hyperplasia and lamellae fusion. These modifications are indicators of the coping mechanism of Hoven's carp to the changing environment in order to survive.
  19. Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132559.
    PMID: 34655643 DOI: 10.1016/j.chemosphere.2021.132559
    Global production of shellfish aquaculture is steadily increasing owing to the growing market demands for shellfish. The intensification of shellfish aquaculture to maximize production rate has led to increased generation of aquaculture waste streams, particularly the effluents and shellfish wastes. If not effectively managed, these wastes could pose serious threats to human health and the ecosystem while compromising the overall sustainability of the industry. The present work comprehensively reviews the source, composition, and environmental implications of shellfish wastes and aquaculture wastewater. Moreover, recent advancements in the valorization of shellfish wastes into value-added biochar via emerging thermochemical and modification techniques are scrutinized. The utilization of the produced biochar in removing emerging pollutants from aquaculture wastewater is also discussed. It was revealed that shellfish waste-derived biochar exhibits relatively higher adsorption capacities (300-1500 mg/g) compared to lignocellulose biochar (<200 mg/g). The shellfish waste-derived biochar can be effectively employed for the removal of various contaminants such as antibiotics, heavy metals, and excessive nutrients from aquaculture wastewater. Finally, future research priorities and challenges faced to improve the sustainability of the shellfish aquaculture industry to effectively support global food security are elaborated. This review envisages that future studies should focus on the biorefinery concept to extract more useful compounds (e.g., carotenoid, chitin) from shellfish wastes for promoting environmental-friendly aquaculture.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links