Displaying publications 21 - 40 of 41 in total

Abstract:
Sort:
  1. Waran V, Tang IP, Karuppiah R, Abd Kadir KA, Chandran H, Muthusamy KA, et al.
    Br J Neurosurg, 2013 Dec;27(6):742-6.
    PMID: 23647078 DOI: 10.3109/02688697.2013.791667
    Abstract The endoscopic transnasal, transsphenoidal surgical technique for pituitary tumour excision has generally been regarded as a less invasive technique, ranging from single nostril to dual nostril techniques. We propose a single nostril technique using a modified nasal speculum as a preferred technique. We initially reviewed 25 patients who underwent pituitary tumour excision, via endoscopic transnasal transsphenoidal surgery, using this new modified speculum-guided single nostril technique. The results show shorter operation time with reduced intra- and post-operative nasal soft tissue injuries and complications.
  2. Nair SR, Rahmat K, Alhabshi SM, Ramli N, Seong MK, Waran V
    Clin Neurol Neurosurg, 2013 Jul;115(7):1150-3.
    PMID: 23031746 DOI: 10.1016/j.clineuro.2012.09.014
  3. Waran V, Bahuri NF, Narayanan V, Ganesan D, Kadir KA
    Br J Neurosurg, 2012 Apr;26(2):199-201.
    PMID: 21970777 DOI: 10.3109/02688697.2011.605482
    The purpose of this study was to validate and assess the accuracy and usefulness of sending short video clips in 3gp file format of an entire scan series of patients, using mobile telephones running on 3G-MMS technology, to enable consultation between junior doctors in a neurosurgical unit and the consultants on-call after office hours.
  4. Waran V, Selladurai BM, Bahuri NF, George GJ, Lim GP, Khine M
    J Trauma, 2008 Feb;64(2):362-5; discussion 365.
    PMID: 18301199 DOI: 10.1097/TA.0b013e318070cc88
    : We present our initial experience using a simple and relatively cost effective system using existing mobile phone network services and conventional handphones with built in cameras to capture carefully selected images from hard copies of scan images and transferring these images from a hospital without neurosurgical services to a university hospital with tertiary neurosurgical service for consultation and management plan.
  5. Tan SH, Ganesan D, Rusydi WZ, Chandran H, Prepageran N, Waran V
    Eur Spine J, 2015 Dec;24(12):2776-80.
    PMID: 26210311 DOI: 10.1007/s00586-015-4153-1
    PURPOSE: Osteoradionecrosis (ORN) is a rare yet well-recognized complication following radiotherapy to the head and neck. We illustrate the only case of a spontaneous extrusion of the sequestered C1 arch through the oral cavity and discuss our experience with a combined endoscopic transnasal and transoral approach for cervical ORN.

    METHODS: A 56-year-old female presented with a 3-month history of blood-stained nasal discharge. She had been treated with radiotherapy for nasopharyngeal carcinoma 25 years earlier. Flexible nasal endoscopy demonstrated an exposed bone with an edematous posterior nasopharyngeal mass. Computed tomography showed a pre-vertebral mass with destruction of C1 and C2. She underwent occipito-cervical fusion followed by a combined transnasal and transoral endoscopic debridement of non-viable bone in the same perioperative setting. Healing of the raw mucosa was by secondary intention and reconstruction was not performed.

    RESULTS: Histopathological examination reported ulcerated inflamed granulation tissue with no evidence of malignancy. During follow-up, she remained neurologically intact with no recurrence.

    CONCLUSION: Using both nasal and oral spaces allows placement of the endoscope in the nasal cavity and surgical instruments in the oral cavity without splitting the palate. Hence, the endoscopic transnasal and transoral approach has vast potential to be effective in carefully selected cases of cervical ORN.

  6. Munusamy T, Karuppiah R, Bahuri NFA, Sockalingam S, Cham CY, Waran V
    World Neurosurg, 2021 01;145:e53-e60.
    PMID: 32956888 DOI: 10.1016/j.wneu.2020.09.076
    OBJECTIVE: The coronavirus disease 2019 pandemic poses major risks to health care workers in neurocritical care. Recommendations are in place to limit medical personnel attending to the neurosurgical patient as a protective measure and to conserve personal protective equipment. However, the complexity of the neurosurgical patient proves to be a challenge and an opportunity for innovation. The goal of our study was to determine if telemedicine delivered through smart glasses was feasible and effective in an alternative method of conducting ward round on neurocritical care patients during the pandemic.

    METHODS: A random pair of neurosurgery resident and specialist conducted consecutive virtual and physical ward rounds on neurocritical patients. A virtual ward round was first conducted remotely by a specialist who received real-time audiovisual information from a resident wearing smart glasses integrated with telemedicine. Subsequently, a physical ward round was performed together by the resident and specialist on the same patient. The management plans of both ward rounds were compared, and the intrarater reliability was measured. On study completion a qualitative survey was performed.

    RESULTS: Ten paired ward rounds were performed on 103 neurocritical care patients with excellent overall intrarater reliability. Nine out of 10 showed good to excellent internal consistency, and 1 showed acceptable internal consistency. Qualitative analysis indicated wide user acceptance and high satisfaction rate with the alternative method.

    CONCLUSIONS: Virtual ward rounds using telemedicine via smart glasses on neurosurgical patients in critical care were feasible, effective, and widely accepted as an alternative to physical ward rounds during the coronavirus disease 2019 pandemic.

  7. Mehbodniya A, Moghavvemi M, Narayanan V, Muthusamy KA, Hamdi M, Waran V
    World Neurosurg, 2020 Feb;134:e379-e386.
    PMID: 31639505 DOI: 10.1016/j.wneu.2019.10.080
    OBJECTIVES: The evaluation of sources of error when preparing, printing, and using 3-dimensional (3D) printed head models for training purposes.

    METHODS: Two 3D printed models were designed and fabricated using actual patient imaging data with reference marker points embedded artificially within these models that were then registered to a surgical navigation system using 3 different methods. The first method uses a conventional manual registration, using the actual patient's imaging data. The second method is done by directly scanning the created model using intraoperative computed tomography followed by registering the model to a new imaging dataset manually. The third is similar to the second method of scanning the model but eventually uses an automatic registration technique. The errors for each experiment were then calculated based on the distance of the surgical navigation probe from the respective positions of the embedded marker points.

    RESULTS: Errors were found in the preparation and printing techniques, largely depending on the orientation of the printed segment and postprocessing, but these were relatively small. Larger errors were noted based on a couple of variables: if the models were registered using the original patient imaging data as opposed to using the imaging data from directly scanning the model (1.28 mm vs. 1.082 mm), and the accuracy was best using the automated registration techniques (0.74 mm).

    CONCLUSION: Spatial accuracy errors occur consistently in every 3D fabricated model. These errors are derived from the fabrication process, the image registration process, and the surgical process of registration.

  8. Veeramuthu V, Narayanan V, Ramli N, Hernowo A, Waran V, Bondi MW, et al.
    World Neurosurg, 2017 Jan;97:416-423.
    PMID: 27751922 DOI: 10.1016/j.wneu.2016.10.041
    OBJECTIVE: To compare the extent of persistent neuropsychological impairment in patients with complicated mild traumatic brain injury (mTBI) and those with uncomplicated mTBI.

    METHODS: Sixty-one patients with mTBI (Glasgow Coma Scale score 13-15) were recruited prospectively, categorized according to baseline computed tomography findings, and subjected to neuropsychological assessment at initial admission (n = 61) as well as at a 6-month follow-up (n = 30). The paired t test, Cohen's d effect size calculation, and repeated-measures analysis of variance were used to establish the differences between the 2 groups in terms of neuropsychological performance.

    RESULTS: A trend toward poorer neuropsychological performance among the patients with complicated mTBI was observed during admission; however, performance in this group improved over time. In contrast, the uncomplicated mTBI group showed slower recovery, especially in tasks of memory, visuospatial processing, and executive functions, at follow-up.

    CONCLUSIONS: Our findings suggest that despite the broad umbrella designation of mTBI, the current classification schemes of injury severity for mild neurotrauma should be revisited. They also raise questions about the clinical relevance of both traumatic focal lesions and the absence of visible traumatic lesions on brain imaging studies in patients with milder forms of head trauma.

  9. Roethlisberger M, Eberhard NE, Rychen J, Al-Zahid S, Jayapalan RR, Zweifel C, et al.
    Front Surg, 2023;10:1198837.
    PMID: 37288135 DOI: 10.3389/fsurg.2023.1198837
    BACKGROUND: Cerebellar contusion, swelling and herniation is frequently encoutered upon durotomy in patients undergoing retrosigmoid craniotomy for cerebellopontine angle (CPA) tumors, despite using standard methods to obtain adequate cerebellar relaxation.

    OBJECTIVE: The aim of this study is to report an alternative cerebrospinal fluid (CSF)-diversion method using image-guided ipsilateral trigonal ventriculostomy.

    METHODS: Single-center retro- and prospective cohort study of n = 62 patients undergoing above-mentioned technique. Prior durotomy, CSF-diversion was performed to the point where the posterior fossa dura was visibly pulsatile. Outcome assessment consisted of the surgeon's intra- and postoperative clinical observations, and postoperative radiological imaging.

    RESULTS: Fifty-two out of n = 62 (84%) cases were eligible for analysis. The surgeons consistently reported successful ventricular puncture and a pulsatile dura prior durotomy without cerebellar contusion, swelling or herniation through the dural incision in n = 51/52 (98%) cases. Forty-nine out of n = 52 (94%) catheters were placed correctly within the first attempt, with the majority of catheter tips (n = 50, 96%) located intraventricularly (grade 1 or 2). In n = 4/52 (8%) patients, postoperative imaging revealed evidence of a ventriculostomy-related hemorrhage (VRH) associated with an intracerebral hemorrhage [n = 2/52 (4%)] or an isolated intraventricular hemorrhage [n = 2/52 (4%)]. However, these hemorrhagic complications were not associated with neurological symptoms, surgical interventions or postoperative hydrocephalus. None of the evaluated patients demonstrated radiological signs of upward transtentorial herniation.

    CONCLUSION: The method described above efficiently allows CSF-diversion prior durotomy to reduce cerebellar pressure during retrosigmoid approach for CPA tumors. However, there is an inherent risk of subclinical supratentorial hemorrhagic complications.

  10. Waran V, Narayanan V, Karuppiah R, Pancharatnam D, Chandran H, Raman R, et al.
    J Surg Educ, 2014 Mar-Apr;71(2):193-7.
    PMID: 24602709 DOI: 10.1016/j.jsurg.2013.08.010
    The traditionally accepted form of training is direct supervision by an expert; however, modern trends in medicine have made this progressively more difficult to achieve. A 3-dimensional printer makes it possible to convert patients imaging data into accurate models, thus allowing the possibility to reproduce models with pathology. This enables a large number of trainees to be trained simultaneously using realistic models simulating actual neurosurgical procedures. The aim of this study was to assess the usefulness of these models in training surgeons to perform standard procedures that require complex techniques and equipment.
  11. Waran V, Devaraj P, Hari Chandran T, Muthusamy KA, Rathinam AK, Balakrishnan YK, et al.
    J Clin Neurosci, 2012 Apr;19(4):574-7.
    PMID: 22305869 DOI: 10.1016/j.jocn.2011.07.031
    In neurosurgery and ear, nose and throat surgery the application of computerised navigation systems for guiding operations has been expanding rapidly. However, suitable models to train surgeons in using navigation systems are not yet available. We have developed a technique using an industrial, rapid prototyping process from which accurate spatial models of the cranium, its contents and pathology can be reproduced for teaching. We were able to register, validate and navigate using these models with common available navigation systems such as the Medtronic StealthStation S7®.
  12. Waran V, Menon R, Pancharatnam D, Rathinam AK, Balakrishnan YK, Tung TS, et al.
    Am J Rhinol Allergy, 2012 Sep-Oct;26(5):e132-6.
    PMID: 23168144 DOI: 10.2500/ajra.2012.26.3808
    Surgical navigation systems have been used increasingly in guiding complex ear, nose, and throat surgery. Although these are helpful, they are only beneficial intraoperatively; thus, the novice surgeon will not have the preoperative training or exposure that can be vital in complex procedures. In addition, there is a lack of reliable models to give surgeons hands-on training in performing such procedures.
  13. Roethlisberger M, Jayapalan RR, Hostettler IC, Bin Abd Kadir KA, Mun KS, Brand Y, et al.
    World Neurosurg, 2020 Jan;133:381-391.e2.
    PMID: 31476461 DOI: 10.1016/j.wneu.2019.08.102
    BACKGROUND: Data on the endonasal endoscopic approach (EEA) to treat sellar/parasellar synchronous tumors remain sparse. This work aims to describe a minimally invasive approach with intraoperative magnetic resonance imaging (MRI) to remove a large sellar/parasellar synchronous tumor, and presents a systematic literature review.

    METHODS: The preoperative MRI of a 54-year-old woman revealed a sellar lesion (28 × 19 × 16 mm), presumably a pituitary macroadenoma, and a second extra-axial lesion (22 × 36 × 20 mm) expanding from the tuberculum sellae to the planum sphenoidale with encasement of the anterior communicating complex, presumably a meningioma. We used intraoperative MRI to assess the extent of the resection before reconstructing the large skull base defect. Furthermore, we systematically reviewed pertinent articles retrieved by a PubMed/Embase database search between 1961 and December 2018.

    RESULTS: Out of 63 patients with synchronous tumors reported in 43 publications, we found 3 patients in which the tumor was removed by EEA. In these 3 patients and the presented case, the resection of both lesions was successful, without major approach-related morbidity or mortality. More extensive removal of endonasal structures to gain an adequate tumor exposure was not necessary. We did not find any previous reports describing the benefits of intraoperative MRI in the presented setting.

    CONCLUSIONS: In the rare case of a synchronous meningioma and pituitary adenoma of the sellar region, intraoperative MRI might be beneficial in confirming residual disease before skull base reconstruction, and therefore radiologic follow-up.

  14. Narayanan V, Veeramuthu V, Ahmad-Annuar A, Ramli N, Waran V, Chinna K, et al.
    PLoS One, 2016;11(7):e0158838.
    PMID: 27438599 DOI: 10.1371/journal.pone.0158838
    The predictability of neurocognitive outcomes in patients with traumatic brain injury is not straightforward. The extent and nature of recovery in patients with mild traumatic brain injury (mTBI) are usually heterogeneous and not substantially explained by the commonly known demographic and injury-related prognostic factors despite having sustained similar injuries or injury severity. Hence, this study evaluated the effects and association of the Brain Derived Neurotrophic Factor (BDNF) missense mutations in relation to neurocognitive performance among patients with mTBI. 48 patients with mTBI were prospectively recruited and MRI scans of the brain were performed within an average 10.1 (SD 4.2) hours post trauma with assessment of their neuropsychological performance post full Glasgow Coma Scale (GCS) recovery. Neurocognitive assessments were repeated again at 6 months follow-up. The paired t-test, Cohen's d effect size and repeated measure ANOVA were performed to delineate statistically significant differences between the groups [wildtype G allele (Val homozygotes) vs. minor A allele (Met carriers)] and their neuropsychological performance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up). Minor A allele carriers in this study generally performed more poorly on neuropsychological testing in comparison wildtype G allele group at both time points. Significant mean differences were observed among the wildtype group in the domains of memory (M = -11.44, SD = 10.0, p = .01, d = 1.22), executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05) and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39), while the minor A allele carriers showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p = .00, d = .86) and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66).The minor A allele carriers in comparison to the wildtype G allele group, showed considerably lower scores at admission and remained impaired in most domains across the timepoints, although delayed signs of recovery were noted to be significant in the domains attention and overall cognition. In conclusion, the current study has demonstrated the role of the BDNF rs6265 Val66Met polymorphism in influencing specific neurocognitive outcomes in patients with mTBI. Findings were more detrimentally profound among Met allele carriers.
  15. Dalolio M, Cordier D, Al-Zahid S, Bennett WO, Prepageran N, Waran V, et al.
    J Craniofac Surg, 2021 Oct 12.
    PMID: 35050560 DOI: 10.1097/SCS.0000000000008204
    Objectives: Information about the endonasal endoscopic approach (EEA) for the management of posttraumatic tension pneumocephalus (PTTP) remains scarce. Concomitant rhinoliquorrhea and posttraumatic hydrocephalus (PTH) can complicate the clinical course.

    Methods: The authors systematically reviewed pertinent articles published between 1961 and December 2020 and identified 6 patients with PTTP treated by EEA in 5 reports. Additionally, the authors share their institutional experience including a seventh patient, where an EEA resolved a recurrent PTTP without rhinoliquorrhea.

    Results: Seven PTTP cases in which EEA was used as part of the treatment regime were included in this review. All cases presented with a defect in the anterior skull base, and 3 of them had concomitant rhinoliquorrhea. A transcranial approach was performed in 6/7 cases before EEA was considered to treat PTTP. In 4/7 cases, the PTTP resolved after the first intent; in 2/7 cases a second repair was necessary because of recurrent PTTP, 1 with and 1 without rhinoliquorrhea, and 1/7 case because of recurrent rhinoliquorrhea only. Overall, PTTP treated by EEA resolved with a mean radiological resolution time of 69 days (range 23-150 days), with no late recurrences. Only 1 patient developed a cerebrospinal fluid diversion infection probably related to a first incomplete EEA skull base defects repair. A permanent cerebrospinal fluid diversion was necessary in 3/7 cases.

    Conclusions: Endonasal endoscopic approach repair of air conduits is a safe and efficacious second-line approach after failed transcranial approaches for symptomatic PTTP. However, the strength of recommendation for EEA remains low until further evidence is presented.

  16. Veeramuthu V, Narayanan V, Kuo TL, Delano-Wood L, Chinna K, Bondi MW, et al.
    J Neurotrauma, 2015 Oct 1;32(19):1497-509.
    PMID: 25952562 DOI: 10.1089/neu.2014.3750
    We explored the prognostic value of diffusion tensor imaging (DTI) parameters of selected white matter (WM) tracts in predicting neuropsychological outcome, both at baseline and 6 months later, among well-characterized patients diagnosed with mild traumatic brain injury (mTBI). Sixty-one patients with mTBI (mean age=27.08; standard deviation [SD], 8.55) underwent scanning at an average of 10 h (SD, 4.26) post-trauma along with assessment of their neuropsychological performance at an average of 4.35 h (SD, 7.08) upon full Glasgow Coma Scale recovery. Results were then compared to 19 healthy control participants (mean age=29.05; SD, 5.84), both in the acute stage and 6 months post-trauma. DTI and neuropsychological measures between acute and chronic phases were compared, and significant differences emerged. Specifically, chronic-phase fractional anisotropy and radial diffusivity values showed significant group differences in the corona radiata, anterior limb of internal capsule, cingulum, superior longitudinal fasciculus, optic radiation, and genu of corpus callosum. Findings also demonstrated associations between DTI indices and neuropsychological outcome across two time points. Our results provide new evidence for the use of DTI as an imaging biomarker and indicator of WM damage occurring in the context of mTBI, and they underscore the dynamic nature of brain injury and possible biological basis of chronic neurocognitive alterations.
  17. Hostettler IC, Jayashankar N, Bikis C, Wanderer S, Nevzati E, Karuppiah R, et al.
    Front Bioeng Biotechnol, 2021;9:659413.
    PMID: 34239858 DOI: 10.3389/fbioe.2021.659413
    Background and purpose: Tumorous lesions developing in the cerebellopontine angle (CPA) get into close contact with the 1st (cisternal) and 2nd (meatal) intra-arachnoidal portion of the facial nerve (FN). When surgical damage occurs, commonly known reconstruction strategies are often associated with poor functional recovery. This article aims to provide a systematic overview for translational research by establishing the current evidence on available clinical studies and experimental models reporting on intracranial FN injury. Methods: A systematic literature search of several databases (PubMed, EMBASE, Medline) was performed prior to July 2020. Suitable articles were selected based on predefined eligibility criteria following the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Included clinical studies were reviewed and categorized according to the pathology and surgical resection strategy, and experimental studies according to the animal. For anatomical study purposes, perfusion-fixed adult New Zealand white rabbits were used for radiological high-resolution imaging and anatomical dissection of the CPA and periotic skull base. Results: One hundred forty four out of 166 included publications were clinical studies reporting on FN outcomes after CPA-tumor surgery in 19,136 patients. During CPA-tumor surgery, the specific vulnerability of the intracranial FN to stretching and compression more likely leads to neurapraxia or axonotmesis than neurotmesis. Severe FN palsy was reported in 7 to 15 % after vestibular schwannoma surgery, and 6% following the resection of CPA-meningioma. Twenty-two papers reported on experimental studies, out of which only 6 specifically used intracranial FN injury in a rodent (n = 4) or non-rodent model (n = 2). Rats and rabbits offer a feasible model for manipulation of the FN in the CPA, the latter was further confirmed in our study covering the radiological and anatomical analysis of perfusion fixed periotic bones. Conclusion: The particular anatomical and physiological features of the intracranial FN warrant a distinguishment of experimental models for intracranial FN injuries. New Zealand White rabbits might be a very cost-effective and valuable option to test new experimental approaches for intracranial FN regeneration. Flexible and bioactive biomaterials, commonly used in skull base surgery, endowed with trophic and topographical functions, should address the specific needs of intracranial FN injuries.
  18. Clark D, Joannides A, Ibrahim Abdallah O, Olufemi Adeleye A, Hafid Bajamal A, Bashford T, et al.
    PMID: 32211566 DOI: 10.1016/j.isjp.2020.02.001
    Introduction: Traumatic brain injury (TBI) accounts for a significant amount of death and disability worldwide and the majority of this burden affects individuals in low-and-middle income countries. Despite this, considerable geographical differences have been reported in the care of TBI patients. On this background, we aim to provide a comprehensive international picture of the epidemiological characteristics, management and outcomes of patients undergoing emergency surgery for traumatic brain injury (TBI) worldwide.

    Methods and analysis: The Global Neurotrauma Outcomes Study (GNOS) is a multi-centre, international, prospective observational cohort study. Any unit performing emergency surgery for TBI worldwide will be eligible to participate. All TBI patients who receive emergency surgery in any given consecutive 30-day period beginning between 1st of November 2018 and 31st of December 2019 in a given participating unit will be included. Data will be collected via a secure online platform in anonymised form. The primary outcome measures for the study will be 14-day mortality (or survival to hospital discharge, whichever comes first). Final day of data collection for the primary outcome measure is February 13th. Secondary outcome measures include return to theatre and surgical site infection.

    Ethics and dissemination: This project will not affect clinical practice and has been classified as clinical audit following research ethics review. Access to source data will be made available to collaborators through national or international anonymised datasets on request and after review of the scientific validity of the proposed analysis by the central study team.

  19. Joannides A, Korhonen TK, Clark D, Gnanakumar S, Venturini S, Mohan M, et al.
    NIHR Open Res, 2023;3:34.
    PMID: 37881453 DOI: 10.3310/nihropenres.13377.1
    BACKGROUND: The epidemiology of traumatic brain injury (TBI) is unclear - it is estimated to affect 27-69 million individuals yearly with the bulk of the TBI burden in low-to-middle income countries (LMICs). Research has highlighted significant between-hospital variability in TBI outcomes following emergency surgery, but the overall incidence and epidemiology of TBI remains unclear. To address this need, we established the Global Epidemiology and Outcomes following Traumatic Brain Injury (GEO-TBI) registry, enabling recording of all TBI cases requiring admission irrespective of surgical treatment.

    OBJECTIVE: The GEO-TBI: Incidence study aims to describe TBI epidemiology and outcomes according to development indices, and to highlight best practices to facilitate further comparative research.

    DESIGN: Multi-centre, international, registry-based, prospective cohort study.

    SUBJECTS: Any unit managing TBI and participating in the GEO-TBI registry will be eligible to join the study. Each unit will select a 90-day study period. All TBI patients meeting the registry inclusion criteria (neurosurgical/ICU admission or neurosurgical operation) during the selected study period will be included in the GEO-TBI: Incidence.

    METHODS: All units will form a study team, that will gain local approval, identify eligible patients and input data. Data will be collected via the secure registry platform and validated after collection. Identifiers may be collected if required for local utility in accordance with the GEO-TBI protocol.

    DATA: Data related to initial presentation, interventions and short-term outcomes will be collected in line with the GEO-TBI core dataset, developed following consensus from an iterative survey and feedback process. Patient demographics, injury details, timing and nature of interventions and post-injury care will be collected alongside associated complications. The primary outcome measures for the study will be the Glasgow Outcome at Discharge Scale (GODS) and 14-day mortality. Secondary outcome measures will be mortality and extended Glasgow Outcome Scale (GOSE) at the most recent follow-up timepoint.

  20. Joannides AJ, Korhonen TK, Clark D, Gnanakumar S, Venturini S, Mohan M, et al.
    Neurosurgery, 2024 Feb 01;94(2):278-288.
    PMID: 37747225 DOI: 10.1227/neu.0000000000002661
    BACKGROUND AND OBJECTIVES: Global disparity exists in the demographics, pathology, management, and outcomes of surgically treated traumatic brain injury (TBI). However, the factors underlying these differences, including intervention effectiveness, remain unclear. Establishing a more accurate global picture of the burden of TBI represents a challenging task requiring systematic and ongoing data collection of patients with TBI across all management modalities. The objective of this study was to establish a global registry that would enable local service benchmarking against a global standard, identification of unmet need in TBI management, and its evidence-based prioritization in policymaking.

    METHODS: The registry was developed in an iterative consensus-based manner by a panel of neurotrauma professionals. Proposed registry objectives, structure, and data points were established in 2 international multidisciplinary neurotrauma meetings, after which a survey consisting of the same data points was circulated within the global neurotrauma community. The survey results were disseminated in a final meeting to reach a consensus on the most pertinent registry variables.

    RESULTS: A total of 156 professionals from 53 countries, including both high-income countries and low- and middle-income countries, responded to the survey. The final consensus-based registry includes patients with TBI who required neurosurgical admission, a neurosurgical procedure, or a critical care admission. The data set comprised clinically pertinent information on demographics, injury characteristics, imaging, treatments, and short-term outcomes. Based on the consensus, the Global Epidemiology and Outcomes following Traumatic Brain Injury (GEO-TBI) registry was established.

    CONCLUSION: The GEO-TBI registry will enable high-quality data collection, clinical auditing, and research activity, and it is supported by the World Federation of Neurosurgical Societies and the National Institute of Health Research Global Health Program. The GEO-TBI registry ( https://geotbi.org ) is now open for participant site recruitment. Any center involved in TBI management is welcome to join the collaboration to access the registry.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links