Displaying publications 21 - 40 of 418 in total

Abstract:
Sort:
  1. Ahmad NA, Goh PS, Zakaria NAS, Naim R, Abdullah MS, Ismail AF, et al.
    Chemosphere, 2024 Apr;353:141108.
    PMID: 38423147 DOI: 10.1016/j.chemosphere.2024.141108
    Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.
  2. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, et al.
    Chemosphere, 2021 Oct;280:130601.
    PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601
    In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
  3. Marchellina A, Soegianto A, Irawan B, Indriyasari KN, Rahmatin NM, Mukholladun W, et al.
    Chemosphere, 2024 May 01;358:142214.
    PMID: 38701863 DOI: 10.1016/j.chemosphere.2024.142214
    A comprehensive study was undertaken to examine the contamination of spotted scat fish (Scatophagus argus) with microplastics (MP) in various locations along the East Java coast of Indonesia. The purpose of this study was to collect detailed information regarding the abundance, color, shape, size, type of polymer, and chemical components of the MP. The findings of this study indicated that MP exhibiting distinct attributes-including a specific fiber type, black coloration, and a size range of 1000- <5000 μm-was most abundant in the gill, stomach, and intestines of spotted scat fish of varying lengths. And MP with a size range of 100-<500 μm was prevalent in the sediment. MP with black fragments measuring less than 100 μm in diameter were found primarily in seawater. A positive correlation was identified between fish length and MP abundance in the intestines, as indicated by the Spearman correlation coefficient. Conversely, a negative correlation was detected between fish length and MP abundance in the gills. The findings of the Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses, which indicate the presence of various polymers and chemical substances including plasticizers (e.g., diethyl phthalate, decane, and eicosane), stabilizers (2-piperidinone, hexadecanoic acid, mesitylene, and 2,4-Di-tert-butylphenol), and flame retardant (cyclododecene), in fish, are of the utmost importance. These substances have the potential to endanger the health of both animals and humans if they are ingested through the food chain.
  4. Pratika RA, Wijaya K, Utami M, Mulijani S, Patah A, Alarifi S, et al.
    Chemosphere, 2023 Nov;341:139822.
    PMID: 37598950 DOI: 10.1016/j.chemosphere.2023.139822
    The dehydration of ethanol into diethyl ether over a SO4/SiO2 catalyst was investigated. The SO4/SiO2 catalysts were prepared by the sulfation method using 1, 2, and 3 M of sulfuric acid (SS1, SS2, and SS3) via hydrothermal treatment. This study is focused on the synthesis of a SO4/SiO2 catalyst with high total acidity that can be subsequently utilized to convert ethanol into diethyl ether. The total acidity test revealed that the sulfation process increased the total acidity of SiO2. The SS2 catalyst (with 2 M sulfuric acid) displayed the highest total acidity of 7.77 mmol/g, whereas the SiO2 total acidity was only 0.11 mmol/g. Meanwhile, the SS3 catalyst (with 3 M sulfuric acid) has a lower total acidity of 7.09 mmol/g due to the distribution of sulfate groups on the surface having reached its optimum condition. The crystallinity and structure of the SS2 catalyst were not affected by the hydrothermal treatment or the sulfate process on silica. Furthermore, The SS2 catalyst characteristics in the presence of sulfate lead to a flaky surface in the morphology and non-uniform particle size. In addition, the surface area and pore volume of the SS2 catalyst decreased (482.56-172.26 m2/g) and (0.297-0.253 cc/g), respectively, because of the presence of sulfate on the silica surface. The SS2 catalyst's pore shape information explains the formation of non-uniform pore sizes and shapes. Finally, the activity and selectivity of SO4/SiO2 catalysts in the conversion of ethanol to diethyl ether yielded the highest ethanol conversion of 70.01% and diethyl ether product of 9.05% from the SS2 catalyst (the catalyst with the highest total acidity). Variations in temperature reaction conditions (175-225 °C) show an optimum reaction temperature to produce diethyl ether at 200 °C (11.36%).
  5. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TSB, Bachi' NA, Abdullah NA, Abd Hamid HH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132134.
    PMID: 34517236 DOI: 10.1016/j.chemosphere.2021.132134
    The water stream has been reported to contain non-steroidal anti-inflammatory drugs (NSAIDs), released from households and premises through discharge from Sewage Treatment Plant (STP). This research identifies commonly consumed NSAIDs namely ibuprofen (IBU), diclofenac (DIC), ketoprofen (KET) and naproxen (NAP) in the influent wastewater from two urban catchments (i.e. 2 STPs). We expand our focus to assess the efficiency of monomer (C18) and dimer (HLB) types of sorbents in the solid phase extraction method followed by gas chromatography mass spectrometry (GCMS) analysis and optimize model prediction of NSAIDs in the influent wastewater using I-Optimal design. The ecological risk assessment of the NSAIDs was evaluated. The HLB produced reliable analysis for all NSAIDs under study (STP1: 6.7 × 10-3 mg L-1 to 2.21 × 10-1 mg L-1, STP2: 1.40 × 10-4 mg L-1 to 9.72 × 10-2 mg L-1). The C18 however, selective to NAP. Based on the Pearson proximity matrices, the DICHLB can be a good indicator for IBUHLB (0.565), NAPC18 (0.721), NAPHLB (0.566), and KETHLB (0.747). The optimized model prediction for KET and NAP based on DIC are successfully validated. The risk quotients (RQ) values of NSAIDs were classified as high (RQ > 1), medium (RQ, 0.1-1) and low (RQ, 0.01-0.1) risks. The optimized models are beneficial for major NSAIDs (KET and NAP) monitoring in the influent wastewater of urban domestic area. An upgrade on the existing wastewater treatment infrastructure is recommended to counteract current water security situation.
  6. Looi LJ, Aris AZ, Haris H, Yusoff FM, Hashim Z
    Chemosphere, 2016 Jun;152:265-73.
    PMID: 26974481 DOI: 10.1016/j.chemosphere.2016.02.126
    The present study examined the concentrations of mercury (Hg), methylmercury (MeHg), and selenium (Se) in the multiple tissues of the Plotosus canius and Periophthalmodon schlosseri collected from the Strait of Malacca. The mean value in mg kg(-1) of Hg (P. canius: 0.34 ± 0.19; P. schlosseri: 0.32 ± 0.18) and MeHg in muscle (P. canius: 0.14 ± 0.11; P. schlosseri: 0.17 ± 0.11) were below the Codex general standard for contaminants and toxins in food and feed (CODEX STAN 193-1995), the Malaysian Food Regulation 1985 and the Japan Food Sanitation Law. For P. canius, the liver contained the highest concentrations of Hg (0.48 ± 0.07 mg kg(-1)) and MeHg (0.21 ± 0.00 mg kg(-1)), whereas for P. schlosseri, the gill contained the highest concentrations of Hg (0.36 ± 0.06 mg kg(-1)) and MeHg (0.21 ± 0.05 mg kg(-1)). The highest concentration of (80)Se (mg kg(-1)) was observed in the liver of P. canius (20.34 ± 5.68) and in the gastrointestinal tract (3.18 ± 0.42) of P. schlosseri. The selenium:mercury (Se:Hg) molar ratios were above 1 and the positive selenium health benefit value (HBVSe) suggesting the possible protective effects of Se against Hg toxicity. The estimate weekly intakes (EWIs) in μg kg(-1) body weight (bw) week(-1) of Hg (P. canius: 0.27; P. schlosseri: 0.15) and MeHg (P. canius: 0.11; P. schlosseri: 0.08) were found to be lower than the provisional tolerable weekly intake established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Based on the calculated EWIs, P. canius, and P. schlosseri were found to be unlikely to cause mercury toxicity in human consumption.
  7. Thangal SH, Nandhinipriya R, Vasuki C, Gayathri V, Anandhan K, Yogeshwaran A, et al.
    Chemosphere, 2023 Oct 17.
    PMID: 37858766 DOI: 10.1016/j.chemosphere.2023.140447
    Ocean acidification (OA) and heavy metals pollution in marine environments are potentially threatening marine life. The interactive effect of OA and heavy metals could be more vulnerable to marine organisms than individual exposures. In the current study, the effect of OA on the toxicity of cadmium (Cd) in the crab Scylla serrata was evaluated. Crab instars (0.07 cm length and 0.1 g weight) were subjected to pH 8.2, 7.8, 7.6, 7.4, 7.2, and 7.0 with and without 0.01 mg l-1 of Cd for 60 days. We notice a significant decrease in growth, molting, protein, carbohydrate, amino acid, lipid, alkaline phosphatase, and haemocytes of crabs under OA + Cd compared to OA treatment. In contrast, the growth, protein, amino acid, and haemocyte levels were significantly affected by OA, Cd, and its interactions (OA + Cd). However, superoxide dismutase, catalase, lipid peroxidation, glutamic oxaloacetate transaminase, glutamic pyruvate transaminase, and accumulation of Cd in crabs were considerably elevated in OA + Cd treatments compared to OA alone treatments. The present investigation showed that the effect of Cd toxicity might be raised under OA on S. serrata. Our study demonstrated that ocean acidification significantly affects the biological indices and oxidative stress responses of S. serrata exposed to Cd toxicity.
  8. Haris H, Aris AZ, Mokhtar MB, Looi LJ
    Chemosphere, 2020 Apr;245:125590.
    PMID: 31874324 DOI: 10.1016/j.chemosphere.2019.125590
    This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p 
  9. Dharmaraj S, Ashokkumar V, Hariharan S, Manibharathi A, Show PL, Chong CT, et al.
    Chemosphere, 2021 Jun;272:129601.
    PMID: 33497928 DOI: 10.1016/j.chemosphere.2021.129601
    Recently, the COVID-19 disease spread has emerged as a worldwide pandemic and cause severe threats to humanity. The World Health Organisation (WHO) releases guidelines to help the countries to reduce the spread of this virus to the public, like wearing masks, hand hygiene, social distancing, shutting down all types of public transports, etc. These conditions led to a worldwide economic fall drastically, and on the other hand, indirect environmental benefits like global air quality improvement and decreased water pollution are also pictured. Currently, use of face masks is part of a comprehensive package of the prevention and control measures that can limit the spread of COVID-19 since there is no clinically proven drugs or vaccine available for COVID-19. Mostly, face masks are made of petroleum-based non-renewable polymers that are non-biodegradable, hazardous to the environment and create health issues. This study demonstrates the extensive use of the face mask and how it affects human health and the marine ecosystem. It has become a great challenge for the government sectors to impose strict regulations for the proper disposal of the masks as medical waste by the public. Neglecting the seriousness of this issue may lead to the release of large tonnes of micro-plastics to the landfill as well as to the marine environment where mostly end-up and thereby affecting their fauna and flora population vastly. Besides, this study highlights the COVID-19 spread, its evolutionary importance, taxonomy, genomic structure, transmission to humans, prevention, and treatment.
  10. Yan L, Chen W, Wang C, Liu S, Liu C, Yu L, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132510.
    PMID: 34627823 DOI: 10.1016/j.chemosphere.2021.132510
    Tetracycline is a potentially hazardous residual antibiotic detected in various sewages. High concentration (mg/L) of tetracycline is found in pharmaceutical/hospital wastewater and wastewater derived from livestock and poultry. So far, only antibiotics in μg/L level have been reported in granulation of aerobic sludge during wastewater treatment, but its effects in high concentration are rarely reported. In this study, the influence of tetracycline in high concentration (∼2 mg/L) on the formation of granular sludge, structure, and metabolic function of the microbial community during the granulation of aerobic sludge was investigated to improve the understanding of the aerobic granular sludge formation under high-level of tetracycline. The role of extracellular polymers substances (EPSs) derived from granular sludge in the granulation and tetracycline removal process was also investigated, showing that tetracycline improved the relative hydrophobicity, flocculability and protein/polysaccharide ratio of EPSs, accelerating the granulation of sludge. Succession of microbial communities occurred during the domestication of functional bacteria present in the sludge and was accompanied with regulation of metabolic function. The addition of tetracycline lead to an increase of tetracycline-degrading bacteria or antibiotic resistance genus. Those findings provide new perspectives of the influence of tetracycline on aerobic sludge granulation and the removal mechanism of tetracycline.
  11. Hai T, Ma X, Singh Chauhan B, Mahmoud S, Al-Kouz W, Tong J, et al.
    Chemosphere, 2023 Oct;338:139398.
    PMID: 37406939 DOI: 10.1016/j.chemosphere.2023.139398
    A newly developed waste-to-energy system using a biomass combined energy system designed and taken into account for electricity generation, cooling, and freshwater production has been investigated and modeled in this project. The investigated system incorporates several different cycles, such as a biomass waste integrated gasifier-gas turbine cycle, a high-temperature fuel cell, a Rankine cycle, an absorption refrigeration system, and a flash distillation system for seawater desalination. The EES software is employed to perform a basic analysis of the system. They are then transferred to MATLAB software to optimize and evaluate the impact of operational factors. Artificial intelligence is employed to evaluate and model the EES software's analysis output for this purpose. By enhancing the flow rate of fuel from 4 to 6.5 kg/s, the cost rate and energy efficiency are reduced by 51% and increased by 6.5%, respectively. Furthermore, the maximum increment in exergetic efficiency takes place whenever the inlet temperature of the gas turbine rises. According to an analysis of three types of biomasses, Solid Waste possesses the maximum efficiency rate, work output, and expense. Rice Husk, in contrast, has the minimum efficiency, work output, and expense. Additionally, with the change in fuel discharge and gas turbine inlet temperature, the system behavior for all three types of biomasses will be nearly identical. The Pareto front optimization findings demonstrate that the best mode for system performance is an output power of 53,512 kW, a cost of 0.643 dollars per second, and a first law efficiency of 42%. This optimal value occurs for fuel discharge of 5.125 and the maximum inlet temperature for a gas turbine. The rates of water desalination and cooling in this condition are 18.818 kg/s and 2356 kW, respectively.
  12. Hai T, El-Shafay AS, Goyal V, Alshahri AH, Almujibah HR
    Chemosphere, 2023 Sep 01.
    PMID: 37660791 DOI: 10.1016/j.chemosphere.2023.139782
    Considering the persistent human need for electricity and fresh water, cogeneration systems based on the production of these two products have attracted the attention of researchers. This study investigates a cogeneration system of electricity and fresh water based on gas turbine (GT) as the prime mover. The wasted energy of the GT exhaust gases is absorbed by a heat recovery steam generator (HRSG) and supplies the superheat steam required by the steam turbine (ST). In order to produce fresh water, a multi-effect desalination (MED) system is applied. The motive steam required is provided by extracting steam from the ST. In order to reduce the environmental pollution of this cogeneration system, the steam injection method is proposed in the GT's combustion chamber (CC). This system is optimized by a multi-objective optimization tool based on the Genetic Algorithm (GA). The design variables include pressure ratio of compressor (CPR), inlet temperature of gas turbine (TIT), steam injection mass flow rate in the CC, HRSG operating pressure, HRSG evaporator pinch point temperature difference (PPTD), steam pressure of the MED ejector, ejector motive steam flow rate, number of MED effects, and return effect. The goals are to minimize the total cost rate (TCR), which includes the cost of initial investment and maintenance of the system, the cost of consumed fuel, and the cost of disposing of CO and NO pollutants, as well as maximizing the exergy efficiency. In the end, it is observed that the steam injection in the CC leads to the reduction of the mentioned pollutant index, and it is proposed as a suitable solution to reduce the pollution of the proposed cogeneration system.
  13. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
  14. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Chemosphere, 2021 Feb;264(Pt 1):128488.
    PMID: 33045559 DOI: 10.1016/j.chemosphere.2020.128488
    Contamination of endocrine disrupting compounds (EDCs) in tap water is an emerging global issue, and there are abundant influencing factors that have an ambivalent effect on their transportation and fate. Different housing types vary in terms of water distribution system operation and design, water consumption choices, and other hydraulic factors, which potentially affect the dynamics, loadings, and partitioning of pollutants in tap water. Thus, this study analyzed 18 multiclass EDCs in tap water from different housing types (i.e., landed and high-rise) and the associated health risks. Sample analyses revealed the presence of 16 EDCs, namely hormones (5), pharmaceuticals (8), a pesticide (1), and plasticizers (2) in tap water, with the prevalent occurrence of bisphenol A up to 66.40 ng/L in high-rise housing. The presence of caffeine and sulfamethoxazole distribution in tap water was significantly different between landed and high-rise housings (t(152) = -2.298, p = 0.023 and t(109) = 2.135, p = 0.035). Moreover, the salinity and conductivity of tap water in high-rise housings were significantly higher compared to those in landed housings (t(122) = 2.411, p = 0.017 and t(94) = 2.997, p = 0.003, respectively). Furthermore, there were no potential health risks of EDCs (risk quotient 
  15. Mustahil NA, Baharuddin SH, Abdullah AA, Reddy AVB, Abdul Mutalib MI, Moniruzzaman M
    Chemosphere, 2019 May 04;229:349-357.
    PMID: 31078892 DOI: 10.1016/j.chemosphere.2019.05.026
    Ionic liquids (ILs) based surfactants have been emerged as attractive alternatives to the conventional surfactants owing to their tailor-made and eco-friendly properties. Therefore, present study described the synthesis of nine new fatty amino acids based IL surfactants utilizing lauroyl sarcosinate anion and pyrrolidinium, imidazolium, pyridinium, piperidinium, morpholinium and cholinium cations for the first time. The synthesized surface active lauroyl sarcosinate ionic liquids (SALSILs) were characterized by 1H NMR, 13C NMR and TGA. Next, the surface tension and critical micellar concentrations were determined and compared with the surface properties of ILs based surfactants. Further, the toxicity and biodegradability of the synthesized SALSIILs were evaluated to confirm their safe and efficient process applications. The studies revealed that three out of nine synthesized SALSILs containing pyridinium cation have showed strong activity towards the tested microbial growth. The remaining six SALSILs met the biocompatible measures demonstrating moderate to low activity depends on the tested microbes. The alicyclic SALSILs containing morpholinium and piperidinium cations have demonstrated 100% biodegradation after 28 days of the test period. Overall, it is believed that the synthesized SALSILs could effectively replace the conventional surfactants in a wide variety of applications.
  16. Nugraha MW, Zainal Abidin NH, Supandi, Sambudi NS
    Chemosphere, 2021 Aug;277:130300.
    PMID: 33774232 DOI: 10.1016/j.chemosphere.2021.130300
    In this present study, the tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composite has successfully been prepared through a simple mixing process. The WO3 was synthesized through a precipitation method, and CQDs were amino-functionalized using ethylenedinitrilotetraacetic acid (EDTA) and ethylenediamine (EDA) through one-pot hydrothermal method. It is revealed that N-CQDs incorporation into WO3 alters the bandgap energy, crystallinity, surface area, and photoluminescence (PL) properties. The produced composites exhibit higher monoclinic WO3 crystallinity, larger surface area, lower bandgap energy and quenched photoluminescence intensity. The as-prepared WO3/N-CQDs composites exhibit better adsorption and photocatalytic degradation performance of methylene blue (MB) than the pristine WO3. It shows that the combination of N-CQDs and WO3 enhanced visible light absorption, by lowering the bandgap energy of WO3 from 2.175 to 1.495 eV. The best performance composite is WO3/N-CQDs EDA 2.5% with an efficiency of 96.86%, removal rate constant of 0.02017/min, and chemical oxidation demand (COD) removal efficiency achieved 84.61%. Moreover, the WO3/N-CQDs EDA 2.5% shows a significant photocatalytic activity even at higher MB initial concentration with 92.93% removal for 50 ppm MB. Subsequently, the composite also has good stability after a sequential 3-times cycle of degradation with 86.85% removal. The increasing photocatalytic performance is affected by the quenching effect of PL and lower bandgap energy. The lower intensity of the PL indicates the reduced charge carrier recombination resulting in increased photocatalytic activity. The combination of N-CQDs and WO3 resulted in improved photodegradation, which shows its significant potential to be utilized for wastewater treatment.
  17. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
  18. Nguyen DTC, Jalil AA, Hassan NS, Nguyen LM, Nguyen DH, Tran TV
    Chemosphere, 2024 Apr 22;358:142087.
    PMID: 38657696 DOI: 10.1016/j.chemosphere.2024.142087
    Bidens pilosa is classified as an invasive plant and has become a problematic weed to many agricultural crops. This species strongly germinates, grows and reproduces and competing for nutrients with local plants. To lessen the influence of Bidens pilosa, therefore, converting this harmful species into carbon materials as adsorbents in harm-to-wealth and valorization strategies is required. Here, we synthesized a series of magnetic composites based on MFe2O4 (M = Ni, Co, Zn, Fe) supported on porous carbon (MFOAC) derived from Bidens pilosa by a facile hydrothermal method. The Bidens pilosa carbon was initially activated by condensed H3PO4 to increase the surface chemistry. We observed that porous carbon loaded NiFe2O4 (NFOAC) reached the highest surface area (795.7 m2 g-1), followed by CoFe2O4/AC (449.1 m2 g-1), Fe3O4/AC (426.1 m2 g-1), ZnFe2O4/AC (409.5 m2 g-1). Morphological results showed nanoparticles were well-dispersed on the surface of carbon. RhB, MO, and MR dyes were used as adsorbate to test the adsorption by MFOAC. Effect of time (0-360 min), concentration (5-50 mg L-1), dosage (0.05-0.2 g L-1), and pH (3-9) on dyes adsorption onto MFOAC was investigated. It was found that NFOAC obtained the highest maximum adsorption capacity against dyes, RhB (107.96 mg g-1) 
  19. Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, et al.
    Chemosphere, 2023 Apr;321:138000.
    PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000
    In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
  20. Dawood S, Koyande AK, Ahmad M, Mubashir M, Asif S, Klemeš JJ, et al.
    Chemosphere, 2021 Sep;278:130469.
    PMID: 33839393 DOI: 10.1016/j.chemosphere.2021.130469
    The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links