Displaying publications 21 - 40 of 301 in total

Abstract:
Sort:
  1. Lou J, Wu C, Wang H, Cao S, Wei Y, Chen Y, et al.
    Food Chem, 2023 May 15;408:135185.
    PMID: 36525725 DOI: 10.1016/j.foodchem.2022.135185
    The effect of melatonin treatment on the carotenoid metabolism in broccoli florets during storage was explored. The results indicated that 100 µmol/L of melatonin maintained the sensory quality of broccoli florets, which retarded the increase of the L* value and the decrease of the H value. Melatonin treatment increased the activities of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT), leading to the enrichment of endogenous melatonin content in broccoli florets. Meanwhile, the treatment inhibited the concentrations of β-carotene, β-cryptoxanthin, zeaxanthin and lutein, which was beneficial in delaying the yellowing of broccoli. In addition, a series of carotenoid biosynthetic genes such as BoPSY, BoPDS, BoZDS, BoLCYβ and BoZEP was also suppressed by melatonin. Further analysis revealed that the lower carotenoid content and the down-regulated BoNCED expression in treated broccoli resulted in less accumulation of abscisic acid precursors, inhibiting abscisic acid production during the yellowing process.
  2. Fakhlaei R, Babadi AA, Sun C, Ariffin NM, Khatib A, Selamat J, et al.
    Food Chem, 2024 May 30;441:138402.
    PMID: 38218155 DOI: 10.1016/j.foodchem.2024.138402
    Safety and quality aspects of food products have always been critical issues for the food production and processing industries. Since conventional quality measurements are laborious, time-consuming, and expensive, it is vital to develop new, fast, non-invasive, cost-effective, and direct techniques to eliminate those challenges. Recently, non-destructive techniques have been applied in the food sector to improve the quality and safety of foodstuffs. The aim of this review is an effort to list non-destructive techniques (X-ray, computer tomography, ultraviolet-visible spectroscopy, hyperspectral imaging, infrared, Raman, terahertz, nuclear magnetic resonance, magnetic resonance imaging, and ultrasound imaging) based on the electromagnetic spectrum and discuss their principle and application in the food sector. This review provides an in-depth assessment of the different non-destructive techniques used for the quality and safety analysis of foodstuffs. We also discussed comprehensively about advantages, disadvantages, challenges, and opportunities for the application of each technique and recommended some solutions and developments for future trends.
  3. Pandanaboina SC, Kondeti SR, Rajbanshi SL, Kunala PN, Pandanaboina S, Pandanaboina MM, et al.
    Food Chem, 2012 May 1;132(1):150-9.
    PMID: 26434274 DOI: 10.1016/j.foodchem.2011.10.046
    Recent advances in our understanding of the pathogenesis of alcohol-induced hepato-renal injury and the development of new approaches to its treatment have been reported in various works. This study involves alcohol-induced oxidative stress linked to the metabolism of ethanol involving both mitochondrial and peroxisomal fractions of liver and kidney. Alcohol treatment resulted in the depletion of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), Glutathione-S-Transferase (GST) activities, and reduced glutathione (GSH) content, higher level of malondialdehyde (MDA) and lower levels of protein carbonyls (PC) causing malfunction of hepatic and renal tissues, when compared to control rats. Thespesia populnea (TP) leaf extracts, administered to chronic alcohol ingested rats, were envisaged to possess significant antioxidant defence properties and help in the recovery of tissues from alcohol-induced oxidative damage. The results showed that degenerative changes in hepatic and renal cells of alcoholic groups were minimized by the administration of TP leaf extracts as also revealed by histopathological examination. The current findings indicate that treatment with TP extracts reduces alcohol-induced oxidative stress, thereby protecting the hepatic and renal tissue from alcohol-induced damage.
  4. Yong AL, Ooh KF, Ong HC, Chai TT, Wong FC
    Food Chem, 2015 Nov 1;186:32-6.
    PMID: 25976788 DOI: 10.1016/j.foodchem.2014.11.103
    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.
  5. Chai TT, Kwek MT, Ong HC, Wong FC
    Food Chem, 2015 Nov 1;186:26-31.
    PMID: 25976787 DOI: 10.1016/j.foodchem.2014.12.099
    This study aimed to isolate a potent antiglucosidase and antioxidant fraction from Stenochlaena palustris. Extraction was performed with hexane, chloroform, ethyl acetate, methanol, and water. Antiglucosidase, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing antioxidant power (FRAP) assays found methanol extract (ME) to be the most active. Water fraction (WF) of ME was a stronger α-glucosidase inhibitor (EC50 2.9 μg/mL) than quercetin, with weak antiamylase activity. WF was a competitive α-glucosidase inhibitor. DPPH scavenging activity of WF (EC50 7.7 μg/mL) was weaker than quercetin. WF (EC50 364 μg/mL) was a stronger hydrogen peroxide scavenger than gallic acid (EC50 838 μg/mL) and was equally strong as quercetin in scavenging superoxide. WF possessed moderate copper chelating activity. WF was enriched in total phenolics (TP) and hydroxycinnamic acids (THC). TP correlated with antioxidant activity (R(2) > 0.76). Only THC correlated with antiglucosidase activity (R(2) = 0.86). Overall, WF demonstrated concurrent, potent antiglucosidase and antioxidant activities.
  6. Chai TT, Xiao J, Mohana Dass S, Teoh JY, Ee KY, Ng WJ, et al.
    Food Chem, 2021 Mar 15;340:127876.
    PMID: 32871354 DOI: 10.1016/j.foodchem.2020.127876
    Jackfruit is a sweet tropical fruit with very pleasant aroma, and the ripe seeds are edible. In this study, jackfruit seed proteins were isolated and subjected to trypsin digestion. The resultant protein hydrolysate was then subjected to antioxidant assay-guided purification, using centrifugal filtration, C18 reverse-phase and strong cation exchange (SCX) fractionations. The purified SCX fraction was further analyzed by de novo peptide sequencing, and two peptide sequences were identified and synthesized. Peptide JFS-2 (VGPWQK) was detected with antioxidant potential, with EC50 value comparable to that of commercial GSH antioxidant peptide. Additionally, the identified peptides were tested with protein protection potential, in an albumin protein denaturation inhibitory assay. Concurrently, we also investigated the pH, temperature, and gastrointestinal-digestion stability profiles for the identified peptide. With further research efforts, the identified peptides could potentially be developed into preservative agent for protein-rich food systems or as health-promoting diet supplements.
  7. Gholivand S, Lasekan O, Tan CP, Abas F, Wei LS
    Food Chem, 2017 Jun 01;224:365-371.
    PMID: 28159281 DOI: 10.1016/j.foodchem.2016.12.075
    The solubility limitations of phenolic acids in many lipidic environments are now greatly improved by their enzymatic esterification in ionic liquids (ILs). Herein, four different ILs were tested for the esterification of dihydrocaffeic acid with hexanol and the best IL was selected for the synthesis of four other n-alkyl esters with different chain-lengths. The effect of alkyl chain length on the anti-oxidative properties of the resulted purified esters was investigated using β-carotene bleaching (BCB) and free radical scavenging method DPPH and compared with butylated hydroxytoluene (BHT) as reference compound. All four esters (methyl, hexyl, dodecyl and octadecyl dihydrocaffeates) exhibited relatively strong radical scavenging abilities. The scavenging activity of the test compounds was in the following order: methyl ester>hexyl ester⩾dodecyl ester>octadecyl ester>BHT while the order for the BCB anti-oxidative activity was; BHT>octadecyl ester>dodecyl ester>hexyl ester>methyl ester.
  8. Jaafar M, Marcilla AL, Felipe-Sotelo M, Ward NI
    Food Chem, 2018 Apr 25;246:258-265.
    PMID: 29291847 DOI: 10.1016/j.foodchem.2017.11.019
    Water from La Pampa, Argentina, was used for washing and cooking rice to examine the in-situ impact of using naturally-contaminated water for food preparation on the elemental dietary intake. Whilst washing with the control tap water (28 μg/L As) reduced the concentration of As in rice by 23%, the use of different well waters (281-1144 μg/L) increased As levels significantly (48-227%) in comparison with the original concentration in the rice (0.056 µg/g). Cooking the rice at a low water-to-rice ratio (2:1) using modern methods increased the levels of As in the cooked samples by 2-3 orders of magnitude for both pre-washed and un-washed rice. Similar trends were observed for vanadium. Although the levels of manganese, iron, copper, zinc and molybdenum in rice were reduced during washing and cooking for most water samples, the molybdenum concentration in the cooked rice doubled (2.2-2.9 µg/g) when using water containing >1 mg/L Mo.
  9. Yang J, Qiu C, Li G, Lee WJ, Tan CP, Lai OM, et al.
    Food Chem, 2020 Oct 15;327:127014.
    PMID: 32434126 DOI: 10.1016/j.foodchem.2020.127014
    The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.
  10. Cai ZZ, Xu CX, Song ZL, Li JL, Zhang N, Zhao JH, et al.
    Food Chem, 2024 Apr 09;449:139243.
    PMID: 38608605 DOI: 10.1016/j.foodchem.2024.139243
    Linusorbs (LO), cyclolinopeptides, are a group of cyclic hydrophobic peptides and considered a valuable by-product of flaxseed oil due to numerous health benefits. Currently applied acetone or methanol extraction could contaminate the feedstocks for further food-grade application. Using flaxseed cake as feedstock, this study established a practical method for preparing LO from pressed cake. Firstly, LO composition of 15 flaxseed cultivars was analyzed. Next, cold-pressed cake was milled and screened mechanically. The kernel and hull fractions were separated based on the disparity of their mechanical strength. Monitored by hyperspectral fluorescence, the LO-enriched kernel fraction separated from cold-pressed flaxseed cake was further used as feedstock for LO production. After ethanol extraction, partition, and precipitation, LOs were extracted from cold-pressed flaxseed cake with a purity of 91.4%. The proposed method could serve as feasible flaxseed cake valorization strategy and enable the preparation of other polar compounds such as flax lignan and mucilage.
  11. Tan YN, Ayob MK, Wan Yaacob WA
    Food Chem, 2013 Jan 1;136(1):279-84.
    PMID: 23017424 DOI: 10.1016/j.foodchem.2012.08.012
    Palm kernel cake (PKC), the most useful by-product resulted from palm kernel oil production. In this study, PKC-derived protein product was found suitable for use as an antimicrobial agent with potent antibacterial activity, particularly against Bacillus species, after enzymatic hydrolysis with alcalase. The hydrolysate was further purified by gel filtration chromatography. The purified fraction was found to have 14.63±0.70% (w/w) protein, a molecular mass of 2.4kDa and low hemolytic activity (<50% hemolysis of human erythrocytes at concentration of 1000μg/ml). The presence of lysine and the major component lauric acid derivative, as indicated by electrospray ionisation-mass spectrometry (ESI-MS) direct infusion and nuclear magnetic resonance (NMR) spectroscopy, may have contributed to the antibacterial effect of purified PKC fraction. This study suggests that the antibacterial PKC compound may be not a pure peptide but instead a peptide-containing compound high in lauric acid derivative.
  12. Mustapha SNH, Wan JS
    Food Chem, 2022 Mar 30;373(Pt B):131440.
    PMID: 34731804 DOI: 10.1016/j.foodchem.2021.131440
    The objective of this work was to develop a plastic film from food sources with excellent thermal, mechanical, and degradability performance. Corn starch (CS)/nata de coco (NDC) were hybridized with addition of glycerin as plasticizer at different weight ratio and weight percent, respectively. Sample analysis found that the hybridization of CS with NDC improved the film forming properties, mechanical and thermal, degradation properties, as well as hydrophobicity and solubility of the film up to 0.5:0.5 wt hybrid ratio. The properties of the films were highly affected by the homogeneity of the sample during hybridization, with high NDC amount (0.3:0.7 wt CS:NDC) showing poor hydrophobicity, and mechanical and thermal properties. The glycerin content, however, did not significantly affect the hydrophobicity, water solubility, and degradability properties of CS/NDC film. Hybridization of 0.5:0.5 wt CS/NDC with 2 phr glycerin provided the optimum Young's modulus (15.67 MPa) and tensile strength (1.67 MPa) properties.
  13. Ng SH, Robert SD, Wan Ahmad WA, Wan Ishak WR
    Food Chem, 2017 Jul 15;227:358-368.
    PMID: 28274444 DOI: 10.1016/j.foodchem.2017.01.108
    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties.
  14. Ng NT, Sanagi MM, Wan Ibrahim WN, Wan Ibrahim WA
    Food Chem, 2017 May 01;222:28-34.
    PMID: 28041555 DOI: 10.1016/j.foodchem.2016.11.147
    Agarose-chitosan-immobilized octadecylsilyl-silica (C18) film micro-solid phase extraction (μSPE) was developed and applied for the determination of phenanthrene (PHE) and pyrene (PYR) in chrysanthemum tea samples using high performance liquid chromatography-ultraviolet detection (HPLC-UV). The film of blended agarose and chitosan allows good dispersion of C18, prevents the leaching of C18 during application and enhances the film mechanical stability. Important μSPE parameters were optimized including amount of sorbent loading, extraction time, desorption solvent and desorption time. The matrix match calibration curves showed good linearity (r⩾0.994) over a concentration range of 1-500ppb. Under the optimized conditions, the proposed method showed good limits of detection (0.549-0.673ppb), good analyte recoveries (100.8-105.99%) and good reproducibilities (RSDs⩽13.53%, n=3) with preconcentration factors of 4 and 72 for PHE and PYR, respectively.
  15. Bhat R, Ameran SB, Voon HC, Karim AA, Tze LM
    Food Chem, 2011 Jul 15;127(2):641-4.
    PMID: 23140712 DOI: 10.1016/j.foodchem.2011.01.042
    Starfruit juice were exposed to ultraviolet (UV-C) light for 0, 30 and 60min at room temperature (25±1°C). On exposure, the titratable acidity significantly decreased, while the decrease in °Brix and pH were not significant. With regard to colorimetric parameters, L(∗) value increased significantly with a subsequent decrease in a(∗) and b(∗) values corresponding to UV treatment time. Except for the ascorbic acid, other antioxidants measured (% DPPH inhibition, total phenols, flavonols, flavonoids and antioxidant capacity) showed enhancement on expsoure to UV (significant at 60min). Microbial studies showed reduction in APC, yeasts and mould counts by 2-log cycle on UV treatments. These results supports the application of UV as a measure of non-thermal and physical food preservation technique for starfruit juice that can be explored commercially to benefit both the producers and consumers.
  16. Fadimu GJ, Gan CY, Olalere OA, Farahnaky A, Gill H, Truong T
    Food Chem, 2023 May 01;407:135082.
    PMID: 36493485 DOI: 10.1016/j.foodchem.2022.135082
    Application of non-thermal treatment to proteins prior to enzymatic hydrolysis can facilitate the release of novel bioactive peptides (BPs) with unique biological activities. In this study, lupin protein isolate was pre-treated with ultrasound and hydrolysed using alcalase and flavourzyme to produce alcalase hydrolysate (ACT) and flavourzyme hydrolysate(FCT). These hydrolysates were fractionated into 1, 5, and 10 kDa molecular weight fractions using a membrane ultrafiltration technique. The in vitro angiotensin-converting enzyme (ACE) studies revealed that unfractionated ACT (IC50 = 3.21 mg mL-1) and FCT (IC50 = 3.32 mg mL-1) were more active inhibitors of ACE in comparison to their ultrafiltrated fractions with IC50 values ranging from 6.09 to 7.45 mg mL-1. Molecular docking analysis predicted three unique peptides from ACT (AIPPGIPY, SVPGCT, and QGAGG) and FCT (AIPINNPGKL, SGNQGP, and PPGIP) as potential ACE inhibitors. Thus, unique BPs with ACE inhibitory effects might be generated from ultrasonicated lupin protein.
  17. Yung YL, Lakshmanan S, Kumaresan S, Chu CM, Tham HJ
    Food Chem, 2023 Dec 15;429:136913.
    PMID: 37506659 DOI: 10.1016/j.foodchem.2023.136913
    The 3-Monochloropropane-1, 2-diol ester (3-MCPDE) and glycidyl ester (GE) are formed at high processing temperatures with the presence of respective precursors. Both are potentially harmful to humans, causing adverse health impacts including kidney damage, reproductive problems, and increased risk of cancer. The presence of 3-MCPDE and GE in palm oil is of particular concern because of its widespread use by the food industry. There are a variety of methods for reducing 3-MCPDE and GE. For example, water washing eliminates mostly inorganic chlorides that, in turn, reduce the formation of 3-MCPDE. 3-MCPDE has also been reduced by up to 99% using combinations of methods and replacing stripping steam with alcohol-based media. Activated carbon, clay, antioxidants, potassium-based salts, and other post-refining steps have positively lowered GE, ranging from 10 to 99%. Several approaches have been successful in reducing these process contaminants without affecting other quality metrics.
  18. Low KH, Zain SM, Abas MR, Md Salleh K, Teo YY
    Food Chem, 2015 Jun 15;177:390-6.
    PMID: 25660902 DOI: 10.1016/j.foodchem.2015.01.059
    The trace metal concentrations in edible muscle of red tilapia (Oreochromis spp.) sampled from a former tin mining pool, concrete tank and earthen pond in Jelebu were analysed with microwave assisted digestion-inductively coupled plasma-mass spectrometry. Results were compared with established legal limits and the daily ingestion exposures simulated using the Monte Carlo algorithm for potential health risks. Among the metals investigated, arsenic was found to be the key contaminant, which may have arisen from the use of formulated feeding pellets. Although the risks of toxicity associated with consumption of red tilapia from the sites investigated were found to be within the tolerable range, the preliminary probabilistic estimation of As cancer risk shows that the 95th percentile risk level surpassed the benchmark level of 10(-5). In general, the probabilistic health risks associated with ingestion of red tilapia can be ranked as follows: former tin mining pool > concrete tank > earthen pond.
  19. Tan LL, Ahmed SA, Ng SK, Citartan M, Raabe CA, Rozhdestvensky TS, et al.
    Food Chem, 2020 Mar 30;309:125654.
    PMID: 31678669 DOI: 10.1016/j.foodchem.2019.125654
    A specialized DNA extraction method and a SYBR Green quantitative polymerase chain reaction (SyG-qPCR) assay were combined to generate a ready-to-use kit for rapid detection of porcine admixtures in processed meat products. Our qPCR assay utilized repetitive LINE-1 elements specific to the genome of Sus scrofa domesticus (pig) as a target and incorporated internal controls. We improved the genomic DNA extraction method, and reduced extraction times to the minimum. The method was validated for specificity, sensitivity (0.001% w/w) and robustness, and values were compared with those of a commercially available kit. We also tested our method using 121 processed food products and consistently detected amplification only in samples containing pork. Due to its efficiency and cost-effectiveness, our method represents a valuable new method for detecting food adulteration with pork that is superior to existing quality control approaches.
  20. Alu'datt MH, Khamayseh Y, Alhamad MN, Tranchant CC, Gammoh S, Rababah T, et al.
    Food Chem, 2022 Mar 30;373(Pt B):131531.
    PMID: 34823940 DOI: 10.1016/j.foodchem.2021.131531
    The nutrient composition of 50 commonly consumed Jordanian food dishes was determined to support the development of a novel nutrition management system designed to assist with dietary intake assessment and diet management. Composite dishes were selected by interviewing households located in the northern region of Jordan. For each dish, five different recipes were collected from experienced chefs and the typical recipe was formulated based on the average weights of ingredients and net weight of the dish. Proximate composition as well as vitamin and mineral contents were determined and related to ingredient composition and cooking conditions. The newly created food composition database was used to develop a user-centric nutrition management software tailored to reflect the characteristics of the Jordanian diet with representative items from this diet. This novel nutrition management system is customizable, enabling users to build daily meal plans in accordance with personalized dietary needs and goals.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links