Displaying publications 21 - 40 of 302 in total

Abstract:
Sort:
  1. Yang M, Mohammad Yusoff WF, Mohamed MF, Jiao S, Dai Y
    J Environ Manage, 2024 Feb;351:119798.
    PMID: 38103426 DOI: 10.1016/j.jenvman.2023.119798
    With climate change and urbanization, flood disasters have significantly affected urban development worldwide. In this study, we developed a paradigm to assess flood economic vulnerability and risk at the urban mesoscale, focusing on urban land use. A hydrological simulation was used to evaluate flood hazards through inundation analyses, and a hazard-vulnerability matrix was applied to assess flood risk, enhancing the economic vulnerability assessment by quantifying the differing economic value and flood losses associated with different land types. The case study of Wangchengpo, Changsha, China, found average total economic losses of 126.94 USD/m2, with the highest risk in the settlement core. Residential areas had the highest flood hazard, vulnerability, and losses (61.10% of the total loss); transportation areas accounted for 27.87% of the total economic losses due to their high flooding depth. Despite low inundation, industrial land showed greater economic vulnerability due to higher overall economic value (10.52% of the total). Our findings highlight the influence of land types and industry differences on flood vulnerability and the effectiveness of land-use inclusion in urban-mesoscale analyses of spatial flood characteristics. We identify critical areas with hazard and economic vulnerability for urban land and disaster prevention management and planning, helping to offer targeted flood control strategies to enhance urban resilience.
  2. Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, et al.
    J Environ Manage, 2024 Feb;351:119830.
    PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830
    Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
  3. See MS, Musa N, Liew HJ, Harun NO, Rahmah S
    J Environ Manage, 2024 Feb;351:119677.
    PMID: 38042084 DOI: 10.1016/j.jenvman.2023.119677
    Sweet orange Citrus sinensis peel is a phytobiotic agricultural waste with bioactive compounds that have potential functional properties as a growth promoter and immune stimulator. This study aims to evaluate the dietary effects of sweet orange peel (SOP) as a feed additive on growth enhancement of juvenile bagrid catfish Mystus nemurus and their disease resistance ability against Aeromonas hydrophila infection. Four experimental diets were formulated to contain 0 (SOP0, control), 4 (SOP4), 8 (SOP8) and 12 g/kg (SOP12) SOP. After 90 d of the feeding experiment, improvement in weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were observed in the fish fed with SOP4. While fish survival was not significantly affected, hepatosomatic and viscerosomatic indices were significantly higher in fish fed with SOP12. Muscle protein was higher in fish fed with SOP4, SOP8, and SOP12 than in control but muscle lipids showed an opposite trend. A 14-d post-challenge test against A. hydrophila revealed no significant effect on the fish survival. Nevertheless, fish fed SOP4 encountered delayed bacterial infection compared to other treatments and fish fed with SOP0 and SOP4 performed numerically better survival. Infected fish showed skin depigmentation, haemorrhagic signs at the abdomen and anus, internal bleeding, and stomach and intestine enlargement. In conclusion, SOP4 could be recommended as a growth promoter while slightly delaying A. hydrophila infection in M. nemurus.
  4. Subramaniam Y, Loganathan N, Subramaniam T
    J Environ Manage, 2024 Feb;351:119646.
    PMID: 38042078 DOI: 10.1016/j.jenvman.2023.119646
    Governance has become indispensable within the healthcare sector, but previous studies have not explored the potential environmental benefits linked to healthcare governance. Thus, this study focuses on the role of governance in moderating healthcare and environmental emissions in 159 low, lower-middle, upper-middle and high-income countries. To do so, cross-sectional autoregressive distributed lag (CS-ARDL) techniques were applied using panel data from 1999 to 2021, followed by the computation of threshold and marginal effect of governance on healthcare and environmental emissions nexus. Findings revealed that, with the exception of high-income countries in the short run, governance has an insignificant impact on healthcare and emissions nexus in low-, lower-middle and upper-middle-income countries. Surprisingly, the findings imply that, in the long run, countries with greater levels of governance are likely to have lesser environmental impacts related to healthcare. There was also evidence indicating that low, lower-middle, upper-middle and high-income countries must reach a certain level of governance before realising the benefits of healthcare. Therefore, to achieve lower environmental impacts from healthcare, countries must promote effective governance policies that can incentivise and enforce sustainable practices and technologies in the healthcare sector.
  5. Faiz I, Ahmad M, Ramadan MF, Zia U, Rozina, Bokhari A, et al.
    J Environ Manage, 2024 Jan 15;350:119567.
    PMID: 38007927 DOI: 10.1016/j.jenvman.2023.119567
    Dealing with the current defaults of environmental toxicity, heating, waste management, and economic crises, exploration of novel non-edible, toxic, and waste feedstock for renewable biodiesel synthesis is the need of the hour. The present study is concerned with Buxus papillosa with seeds oil concentration (45% w/w), a promising biodiesel feedstock encountering environmental defaults and waste management; in addition, this research performed simulation based-response surface methodology (RSM) for Buxus papillosa bio-diesel. Synthesis and application of novel Phyto-nanocatalyst bimetallic oxide with Buxus papillosa fruit capsule aqueous extract was advantageous during transesterification. Characterization of sodium/potassium oxide Phyto-nanocatalyst confirmed 23.5 nm nano-size and enhanced catalytic activity. Other characterizing tools are FTIR, DRS, XRD, Zeta potential, SEM, and EDX. Methyl ester formation was authenticated by FTIR, GC-MS, and NMR. A maximum 97% yield was obtained at optimized conditions i.e., methanol ratio to oil (8:1), catalyst amount (0.37 wt%), reaction duration (180 min), and temperature of 80 °C. The reusability of novel sodium/potassium oxide was checked for six reactions. Buxus papillosa fuel properties were within the international restrictions of fuel. The sulphur content of 0.00090% signified the environmental remedial nature of Buxus papillosa methyl esters and it is a highly recommendable species for biodiesel production at large scale due to a t huge number of seeds production and vast distribution.
  6. Taufek NM, Mohamad Zulkifli NFN, Hamizah AN
    J Environ Manage, 2024 Jan 01;349:119467.
    PMID: 37976636 DOI: 10.1016/j.jenvman.2023.119467
    Innovative solutions are needed to limit environmental effect and optimise resource use as food waste generation rises worldwide. This study investigates the potential of upcycling food waste from fresh markets using Black Soldier Fly (Hermetia illucens) larvae (BSFL) as a sustainable approach. This study explored four fresh market food waste substrates for BSFL bioconversion: discarded fish waste (FI), slaughtered chicken waste (CHI), vegetable waste (VEG), and a 1:1:1 combination of all three (MIX). Soybean curd residue (SCR) was treated as the control substrate. The effects on larval growth, nutritional content, and waste bioconversion rates were examined. The larvae growth rate was strongly impacted by waste type, with BSF-fed CHI and MIX gaining 18.0 and 16.7 mg/d, respectively, followed by BSF-fed with SCR (12.2 mg/d), FI (8.9 mg/d) and VEG (7.6 mg/d). The waste type did not substantially alter BSFL length. The survival rate of the BSFL fed with the food waste studied ranges from 95 to 98.47%, with SCR being the highest. Our findings indicated that BSFL can effectively convert a variety of fresh market food waste into valuable biomass. CHI waste produced the highest larval biomass and bioconversion rate followed by MIX, SCR, FI and VEG. The different waste stream has a major influence on BSFL biomass nutrition. BSFL nutritional composition is independent of the substrate's nutritional content, indicating no direct correlation between substrate and BSFL biomass nutritional composition. SCR waste produced the highest protein content of BSFL (50.49%), followed by VEG (32.61%), MIX (32.57%), FI (31.03%) and CHI (29.06%). SCR waste also produced BSFL biomass with lowest lipid content (26.55%) compared to other waste which resulted into BSFL with lipid levels ranging from 42.92% to 53.72%. BSFL-fed with SCR is the most suitable to be used as an alternative animal's feed based on the protein and lipid levels, while defatting procedure is necessary for the other waste-fed BSFL to render it suitability as animal feed alternatives. Based on bioconversion rate, BSFL growth, and lipid content, the MIX and CHI waste might be viable substrates for future research.
  7. Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC
    J Environ Manage, 2024 Jan 01;349:119445.
    PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445
    Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
  8. Kalidasan B, Pandey AK, Aljafari B, Chinnasamy S, Kareri T, Rahman S
    J Environ Manage, 2023 Dec 15;348:119439.
    PMID: 37890400 DOI: 10.1016/j.jenvman.2023.119439
    Metal, carbon and conducting polymer nanoparticles are blended with organic phase change materials (PCMs) to enhance the thermal conductivity, heat storage ability, thermal stability and optical property. However, the existing nanoparticle are expensive and need to be handle with high caution during operation as well during disposal owing to its toxicity. Subsequently handling of solid waste and the disposal of organic PCM after longevity usage are of utmost concern and are less exposed. Henceforth, the current research presents a new dimension of exploration by green synthesized nanoparticles from a thorny shrub of an invasive weed named Prosopis Juliflora (PJ) which is a agro based solid waste. Subsequently, the research is indented to decide the concentration of green synthesized nanoparticle for effective heat transfer rate of organic PCM (Tm = 35-40 °C & Hm = 145 J/g). Furthermore, an in-depth understanding on the kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM after usage via Coats and Redfern technique is exhibited. Engaging a two-step method, we fuse the green synthesized nanomaterial with PCM to obtain nanocomposite PCM. On experimental evaluation, thermal conductivity of the developed nanocomposite (PCM + PJ) increases by 63.8% (0.282 W/m⋅K to 0.462 W/m⋅K) with 0.8 wt% green synthesized nanomaterial owing to the uniform distribution of nanoparticle within PCM matrix thereby contributing to bridging thermal networks. Subsequently, PCM and PCM + PJ nanocomposites are tested using thermogravimetric analyzer at different heating rates (05 °C/min; 10 °C/min; 15 °C/min & 20 °C/min) to analyze the decomposition kinetic reaction. The kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM and its nanocomposite of PCM + PJ provides insight on thermal parameters to be considered on large scale operation and to understand the complex nature of the chemical reactions. Adopting thirteen different chemical mechanism model under Coats and Redfern method we determine the reaction mechanism; kinetic parameter like activation energy (Ea) & pre-exponential factor (A) and thermodynamic parameter like change in enthalpy (ΔH), change in Gibbs free energy (ΔG) and change in entropy (ΔS). Dispersion of PJ nanomaterial with PCM reduces Ea from 370.82 kJ/mol-1 to 342.54 kJ/mol-1 (7.7% reduction), as the developed nanomaterial is enriched in carbon element and exhibits a catalytic effect for breakdown reaction. Corresponding, value of ΔG for PCM and PCM + PJ sample within heating rates of 05-20 °C/min varies between 168.95 and 41.611 kJ/mol-1. The current research will unbolt new works with focus on exploring the pyrolysis behaviour of phase change materials and its nanocomposite used for energy storage applications. This work also provides insights on the disposal of PCM which is an organic solid waste. The thermo-kinetic profile will help to investigate and predict the optimum heating rate and temperature range for conversion of micro-scale pyrolysis to commercial scale process.
  9. Liu F, Fan C, Li J, Tan Q
    J Environ Manage, 2023 Dec 15;348:119422.
    PMID: 37879176 DOI: 10.1016/j.jenvman.2023.119422
    International trade of plastic waste promotes the global plastic circular economy and improves resource efficiency, but exacerbates the ubiquitous plastic pollution. Understanding the drivers behind the evolution of the global plastic waste trade network (GPWTN) is pivotal for developing new international instruments to end plastic pollution and fostering clean solid-waste trade. Employing social network analysis (SNA) and quadratic assignment procedure (QAP) model, this study structures the GPWTN using bilateral trade data, revealing shifts from highly centralized to cross-layered networks and relevant drivers. It is suggested that Malaysia and Turkey has become the new key recipients of the GPWTN, replacing China, accompanied by the launch of new environmental regulations in some countries. Transportation cost is the most critical factor for the formation of the GPWTN, followed by gaps in resource demand, bio-based resource availability, and transportation accessibility. Trading partners in closer proximity, especially those with contiguous borders, are more likely to trade in waste plastics, while coastal countries play an important role in these partnerships. Economies with more abundant biomaterials, higher incomes, and greater environmental burdens are more likely to be exporters, while economies with scarcer resources and more compelling demands are more likely to import plastic waste. Countries involved in the trade in plastic waste, as either importers or exporters, receive varying degrees of economic benefits but bear potential environmental impacts. Therefore, global plastic pollution control and trade prosperity necessitates necessitate coordinated endeavors from nations and intergovernmental bodies for a mutually advantageous denouement.
  10. Zhang M, Zhang F, Guo L, Dong P, Cheng C, Kumar P, et al.
    J Environ Manage, 2023 Dec 15;348:119465.
    PMID: 37924697 DOI: 10.1016/j.jenvman.2023.119465
    Grassland degradation poses a serious threat to biodiversity, ecosystem services, and human well-being. In this study, we investigated grassland degradation in Zhaosu County, China, between 2001 and 2020, and analyzed the impacts of climate change and human activities using the Miami model. The actual net primary productivity (ANPP) obtained with CASA (Carnegie-Ames-Stanford Approach) modeling, showed a decreasing trend, reflecting the significant degradation that the grasslands in Zhaosu County have experienced in the past 20 years. Grassland degradation was found to be highest in 2018, while the degraded area continuously decreased in the last 3 years (2018-2020). Climatic factors for found to be the dominant factor affecting grassland degradation, particularly the decrease in precipitation. On the other hand, human activities were found to be the main factor affecting improvement of grasslands, especially in recent years. This finding profoundly elucidates the underlying causes of grassland degradation and improvement and helps implement ecological conservation and restoration measures. From a practical perspective, the research results provide an important reference for the formulation of policies and management strategies for sustainable land use.
  11. Li M, Badeeb RA, Dogan E, Gu X, Zhang H
    J Environ Manage, 2023 Dec 01;347:118994.
    PMID: 37722155 DOI: 10.1016/j.jenvman.2023.118994
    Global economies have recently been concerned about sustainable environmental management by reducing emissions and tackling ecological footprints. The rapid economic expansion and investment in traditional manufacturing further raises environmental degradation. China surpasses other emerging economies in the economic growth race yet has remained the top pollution-emitting economy for the last few decades, necessitating scholarly attention. This study examines the influencing factors of ecological footprints in China from the perspective of COP27. Using the extended dataset from 1988 to 2021, this study uses several time series diagnostic tests and verifies the existence of the long-run association between the study variables. Consequently, the non-linear scattered data leads to non-parametric (method of moment quantile regression) adoption. The empirical results indicate that only economic growth is a significant factor in environmental quality degradation in China. However, improving renewable energy usage, research and development, and foreign direct investment reduces the country's ecological footprint. Hence, the latter variables substantially lead to environmental sustainability. The robustness of the results is confirmed via a robust non-parametric estimator and causality test. Based on the empirical results, this study recommends increased investment in research and development, renewable production, and foreign direct investment enhancement.
  12. Ulfat W, Mohyuddin A, Amjad M, Othman MHD, Gikas P, Kurniawan TA
    J Environ Manage, 2023 Dec 01;347:119129.
    PMID: 37778073 DOI: 10.1016/j.jenvman.2023.119129
    Buffing dust, generated from tannery industries, is a source of air pollution in Pakistan. Valorization of the waste into another useful material is important to deal with the environmental pollution, while reducing waste disposal costs in landfills. To demonstrate its technological strength, this work fabricates a thermal insulation material made of plaster of Paris and the buffing dust (from tanning waste) in the form of a composite with superior mechanical properties and low thermal conductivity. Buffing dust with concentrations ranging from 5 to 20% (w/w) were loaded in the composite. The samples synthesized were made slurry of plaster of Paris, buffing dust, and water at ambient temperature. The physico-mechanical properties of composite were analyzed. It was found that the composite had better thermal insulation properties than the panels of the plaster of Paris. Its thermal conductivity was reduced to 15% after adding buffing dust (20% w/w). All the materials had physico-chemical properties like tensile strength (0.02 MPa and 0.06 MPa), density (700-400 kg/m3), water absorption (5.2-8.6%) and thermal conductivity (0.17000-0.09218 W/m-K). Thermogravimetric analysis showed that the material was thermally stable at temperatures ranging from 145 to 177 °C, while FT-IR results revealed that the composite contained O-H, N-H, and CO functional groups. SEM analysis displayed that the composite's homogeneity was reduced with low voids due to buffing dust addition, while EDX analysis showed that the composite contained 23.62% of S, 26.76% of Ca, 49.2% of O and 0.42% of C. This implies that buffing dust could be recycled to manufacture heat insulation materials for construction sector to reduce air pollution, while minimizing energy consumption. By integrating the buffing dust from tanning waste and the plaster of Paris as a composite for construction sector, this work promotes the recycling of unused waste, while saving public funds. Instead of paying landfill fees and polluting soil, the waste may be recycled at lower cost, while reducing environmental damage.
  13. Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, et al.
    J Environ Manage, 2023 Nov 15;346:118971.
    PMID: 37729832 DOI: 10.1016/j.jenvman.2023.118971
    Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.
  14. Raketh M, Kana R, Kongjan P, Faua'ad Syed Muhammad SA, O-Thong S, Mamimin C, et al.
    J Environ Manage, 2023 Nov 15;346:119031.
    PMID: 37741194 DOI: 10.1016/j.jenvman.2023.119031
    This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.
  15. Mengting Z, Duan L, Zhao Y, Song Y, Xia S, Gikas P, et al.
    J Environ Manage, 2023 Nov 01;345:118772.
    PMID: 37597373 DOI: 10.1016/j.jenvman.2023.118772
    This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.
  16. Alkhadher SAA, Suratman S, Mohd Sallan MIB
    J Environ Manage, 2023 Nov 01;345:118464.
    PMID: 37454570 DOI: 10.1016/j.jenvman.2023.118464
    The spatial and temporal distributions of trace metals in dissolved forms mainly result from anthropogenic and lithogenic contributions. Surface water samples (∼0.5 m) were collected monthly at respective stations from Setiu Wetland. In this study, the behaviour of trace metals in the dissolved phases along the water column from sampling sites in the Setiu Wetland, Malaysia was investigated. In addition, dissolved organic carbon (DOC) and physical parameters such as salinity, temperature, pH and dissolved oxygen (DO) of the surface water were measured in order to evaluate the relationship between trace metals fractionation with different water quality parameters. Size fractionation study of dissolved trace metals using ultrafiltration technique were also carried out and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Correlation of trace metals with other measured parameters was made to furthermore understand the dynamics of trace metals and its fractionated components in this area. The concentration of dissolved trace metals was in the range of 0.001-0.16 μg/L for Cd, 0.12-2.81 μg/L for Cu, 0.01-1.84 μg/L for Pb, 3-17 μg/L for Fe and 1-34 μg/L for Zn, suggesting the input of anthropogenic sources for trace metals such as municipal, industrial, agricultural and domestic discharge. The periodic monitoring and evaluation of trace metals in wetlands and protected tropical areas is highly recommended.
  17. Gholizadeh M, Shadi A, Abadi A, Nemati M, Senapathi V, Karthikeyan S
    J Environ Manage, 2023 Oct 15;344:118386.
    PMID: 37352628 DOI: 10.1016/j.jenvman.2023.118386
    Global production of plastics has increased dramatically in recent decades and is considered a major threat to marine life and human health due to their stability, persistence, and potential to move through food chains. The study was conducted to detect, identify and quantify microplastics (MP) in the gastrointestinal tract (GI) of some commercial fish species in the North Persian Gulf in Bushehr Province: Psettodes erumei, Sphyraena jello, Sillago sihama, Metapenaeus affinis and Portunus segnis. A total of 216 plastic particles were collected from 102 individuals (72.68% of all sampled individuals; MP prevalence of 85.1% for M. affinis, 80% for P. segnis, 70% for P.erumei, 60.3% for S.sihama, 45.2% for S.jello). The average number of microplastics per organism was 2.26 ± 0.38 MP/ind (considering only species that ingested plastic, n = 102) and 1.51 ± 0.40 pieces/ind (considering all species studied, n = 140). Microfibers accounted for 58.49% of the total microplastics, followed by fragments (33.02%) and pellets (8.49%). The most common color of microplastic was black (52.83%), followed by blue (22.64%) and transparent (15.09%). The length of microplastic ranged from 100 to 5000 μm with an average of 854 ± 312 μm. Microplastics were significantly (p 
  18. Zhang R, Zhang Y, Goei R, Oh WD, Zhang Z, He C
    J Environ Manage, 2023 Oct 15;344:118441.
    PMID: 37379626 DOI: 10.1016/j.jenvman.2023.118441
    To realize sound disposal of hyperaccumulator harvested from phytoremediation, hydrothermal carbonization (HTC) has been employed to obtain superior hydrochar adsorbents for removal of phosphate and ammonium from water body. A series of hydrochars have been prepared under tuned HTC conditions to tailor hydrochar with desired properties. Generally, increased temperature and prolonged reaction time facilitated acidic oxygen functional groups on hydrochars, thereby improving adsorption capacity of hydrochar. In single solute system, a superior hydrochar, derived from HTC under 260 °C for 2 h, achieved a maximum phosphate and ammonium adsorption capacity of 52.46 mg/g and 27.56 mg/g at 45 °C, respectively. In binary system, synergistic adsorption was observed only in lower solute concentration, whereas competitive adsorption occurred under higher solute concentration. Characterization and adsorption kinetics suggested chemisorption may dominate the adsorption process, thus the adsorption capacity could be improved by tuning pHpzc of hydrochar. This study firstly demonstrates the sustainable utilization of hyperaccumulators into nutrients-enriched hydrochar as fertilizer for in-situ phytoremediation of contaminated sites with minimized environmental risks towards circular economy.
  19. Amesho KTT, Chinglenthoiba C, Samsudin MSAB, Lani MN, Pandey A, Desa MNM, et al.
    J Environ Manage, 2023 Oct 15;344:118713.
    PMID: 37567004 DOI: 10.1016/j.jenvman.2023.118713
    Microplastics (MPs) have become a prevalent environmental concern, exerting detrimental effects on marine and terrestrial ecosystems, as well as human health. Addressing this urgent issue necessitates the implementation of coordinated waste management policies and strategies. In this study, we present a comprehensive review focusing on key results and the underlying mechanisms associated with microplastics. We examine their sources and pathways, elucidate their ecological and human health impacts, and evaluate the current state of waste management policies. By drawing upon recent research and pertinent case studies, we propose a range of practical solutions, encompassing enhanced recycling and waste reduction measures, product redesign, and innovative technological interventions. Moreover, we emphasize the imperative for collaboration and cooperation across sectors and jurisdictions to effectively tackle this pressing environmental challenge. The findings of this study contribute to the broader understanding of microplastics and provide valuable insights for policymakers, researchers, and stakeholders alike.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links