OBJECTIVE: To examine the relative contributions of auditory functioning and cognition status to speech recognition in quiet and in noise.
METHODS: We measured speech recognition in quiet and in composite noise using the Malay Hearing in noise test on 72 native Malay speakers (60-82 years) older adults with normal to mild hearing loss. Auditory function included pure tone audiogram, gaps-in-noise, and dichotic digit tests. Cognitive function was assessed using the Malay Montreal cognitive assessment.
RESULTS: Linear regression analyses using backward elimination technique revealed that had the better ear four frequency average (0.5-4kHz) (4FA), high frequency average and Malay Montreal cognitive assessment attributed to speech perception in quiet (total r2=0.499). On the other hand, high frequency average, Malay Montreal cognitive assessment and dichotic digit tests contributed significantly to speech recognition in noise (total r2=0.307). Whereas the better ear high frequency average primarily measured the speech recognition in quiet, the speech recognition in noise was mainly measured by cognitive function.
CONCLUSIONS: These findings highlight the fact that besides hearing sensitivity, cognition plays an important role in speech recognition ability among older adults, especially in noisy environments. Therefore, in addition to hearing aids, rehabilitation, which trains cognition, may have a role in improving speech recognition in noise ability of older adults.
DESIGN: The MHINT-T and the MyHINT were presented in quiet and noise (front, right and left) conditions under headphones. Results for the two tests were compared with each other and with the norms for each test.
STUDY SAMPLE: Malaysian Chinese native speakers of Mandarin (N = 58), 18-31 years of age with normal hearing.
RESULTS: On average, subjects demonstrated poorer speech perception ability than the normative samples for these tests. Repeated measures ANOVA showed that speech reception thresholds (SRTs) were slightly poorer on the MHINT-T than on the MyHINT for all test conditions. However, normalized SRTs were poorer by 0.6 standard deviations for MyHINT as compared with MHINT-T.
CONCLUSIONS: MyHINT and MHINT-T can be used as norm-referenced speech perception measures for Mandarin-speaking Chinese in Malaysia.
OBJECTIVE: The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations.
METHODS: A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally.
RESULTS: While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p<0.05). As revealed by large effect sizes (d>0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes.
CONCLUSION: The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults.
METHODS: Twenty-nine healthy Malaysian subjects (14 males and 15 females) aged 19 to 30 years participated in this study. After measuring the head circumference, speech-ABR was recorded by using synthesized syllable /da/ from the right ear of each participant. Speech-ABR peaks amplitudes, peaks latencies, and composite onset measures were computed and analyzed.
RESULTS: Significant gender disparities were noted in the transient component but not in the sustained component of speech-ABR. Statistically higher V/A amplitudes and less steeper V/A slopes were found in females. These gender differences were partially affected after controlling for the head size.
CONCLUSIONS: Head size is not the main contributing factor for gender disparities in speech-ABR outcomes. Gender-specific normative data can be useful when recording speech-ABR for clinical purposes.
METHOD: A total of 336 and 616 acoustic tokens were collected from six CI and 11 NH Malay children, respectively. The groups were matched for hearing age and duration of exposure to Arabic sounds. All the 28 Arabic consonants in the form of consonant-vowel /a/ were presented randomly twice via a loudspeaker at approximately 65 dB SPL. The participants were asked to repeat verbally the stimulus heard in each presentation.
RESULTS: Within the native Malay perceptual space, the two groups responded differently to the Arabic consonants. The dispersed uncategorized assimilation in the CI group was distinct in the confusion matrix (CM), as compared to the NH children. Consonants /ħ/, /tˁ/, /sˁ/ and /ʁ/ were difficult for the CI children, while the most accurate item was /k/ (84%). The CI group transmitted significantly reduced information, especially for place feature transmission, then the NH group (p
DESIGN: In this repeated-measures study, 20 normally hearing adults aged between 18 and 30 years were recruited. Tone bursts (500, 1000, 2000, and 4000 Hz) were used to record PAMR thresholds at 3 different stimulus repetition rates (6.1/s, 11.1/s, and 17.1/s).
RESULTS: Statistically higher PAMR thresholds were found for the faster stimulus rate (17.1/s) compared with the slower stimulus rate (6.1/s) (p < 0.05). For all stimulus rates and frequencies, significant correlations were found between PAMR and pure-tone audiometry thresholds (r = 0.62 to 0.82).
CONCLUSIONS: Even though the stimulus rate effect was significant at most of the tested frequencies, the differences in PAMR thresholds between the rates were small (<5 dB). Nevertheless, based on the correlation results, we suggest the use of 11.1/s stimulus rate when recording PAMR thresholds.
METHODS: Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level.
RESULTS: As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR.
CONCLUSION: The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies.
DESIGN: Quasi-experimental and repeated measure study designs were applied in this study. Two different stopping criteria were used, (1) a fixed-signal averaging 4000 sweeps and, (2) a minimum quality indicator of Fmp = 3.1 with a minimum of 800 sweeps.
STUDY SAMPLE: Twenty-nine normally hearing adults (18 females, 11 male) participated.
RESULTS: Wave V amplitudes were significantly larger in the LS CE-Chirp® recorded from the vertical montage than the ipsilateral montage. Waves I and III amplitudes were significantly larger from the ipsilateral LS CE-Chirp® than from the other montages and stimulus combinations. The differences in the quality of the ABR recording between the vertical and ipsilateral montages were marginal.
CONCLUSIONS: Overall, the result suggested that the vertical LS CE-Chirp® ABR had a high potential for a threshold-seeking application, because it produced a higher wave V amplitude. The Ipsilateral LS CE-Chirp® ABR, on the other hand, might also have a high potential for the site of lesion application, because it produced larger waves I and III amplitudes.
Method: Quasi-experimental and repeated-measures study designs were used in this study. Twenty-six adults with normal hearing (17 females, 9 males) participated. ABRs were acquired from the study participants at 3 intensity levels (80, 60, and 40 dB nHL), 3 frequencies (500, 1000, and 2000 Hz), 2 electrode montages (ipsilateral and vertical), and 2 stimuli (NB LS CE-Chirp and tone-burst) using 2 stopping criteria (fixed averages at 4,000 sweeps and F test at multiple points = 3.1).
Results: Wave V amplitudes were only 19%-26% larger for the vertical recordings than the ipsilateral recordings in both the ABRs obtained from the NB LS CE-Chirp and tone-burst stimuli. The mean differences in the F test at multiple points values and the residual noise levels between the ABRs obtained from the vertical and ipsilateral montages were statistically not significant. In addition, the ABR elicited from the NB LS CE-Chirp was significantly larger (up to 69%) than those from the tone-burst, except at the lower intensity level.
Conclusion: Both the ipsilateral and vertical montages can be used to record ABR to the NB LS CE-Chirp because of the small enhancement in the wave V amplitude provided by the vertical montage.