Displaying publications 21 - 40 of 65 in total

Abstract:
Sort:
  1. Dieng H, Rahman GM, Abu Hassan A, Che Salmah MR, Satho T, Miake F, et al.
    Int J Biometeorol, 2012 Jan;56(1):113-20.
    PMID: 21267602 DOI: 10.1007/s00484-011-0402-0
    Larvae of Aedes albopictus Skuse typically inhabit natural and artificial containers. Since these larval habitats are replenished by rainfall, Ae. albopictus may experience increased loss of immature stages in areas with high levels of rainfall. In this study, we investigated the effects of rainfall and container water level on population density, and oviposition activity of Ae. albopictus. In field and laboratory experiments, we found that rainfall resulted in the flushing of breeding habitats. Excess rain negatively impacted larval and pupal retention, especially in small habitats. When filled with water to overflowing, container habitats were significantly repellent to ovipositing females. Taken together, these data suggest that rainfall triggers population loss of Ae. albopictus and related species through a direct detrimental effect (flushing out) and an indirect effect (ovipositional repellency).
    Matched MeSH terms: Aedes/physiology*
  2. Dieng H, Tan Yusop NS, Kamal NN, Ahmad AH, Ghani IA, Abang F, et al.
    J Agric Food Chem, 2016 May 11;64(18):3485-91.
    PMID: 27115536 DOI: 10.1021/acs.jafc.6b01157
    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
    Matched MeSH terms: Aedes/physiology
  3. Dieng H, Satho T, Abang F, Meli NKKB, Ghani IA, Nolasco-Hipolito C, et al.
    Acta Trop, 2017 May;169:84-92.
    PMID: 28174057 DOI: 10.1016/j.actatropica.2017.01.022
    In nature, adult mosquitoes typically utilize nectar as their main energy source, but they can switch to other as yet unidentified sugary fluids. Contemporary lifestyles, with their associated unwillingness to consume leftovers and improper disposal of waste, have resulted in the disposal of huge amounts of waste into the environment. Such refuse often contains unfinished food items, many of which contain sugar and some of which can collect water from rain and generate juices. Despite evidence that mosquitoes can feed on sugar-rich suspensions, semi-liquids, and decaying fruits, which can be abundant in garbage sites, the impacts of sweet waste fluids on dengue vectors are unknown. Here, we investigated the effects of extracts from some familiar sweet home waste items on key components of vectorial capacity of Aedes aegypti. Adult mosquitoes were fed one of five diets in this study: water (WAT); sucrose (SUG); bakery product (remnant of chocolate cake, BAK); dairy product (yogurt, YOG); and fruit (banana (BAN). Differences in survival, response time to host, and egg production were examined between groups. For both males and females, maintenance on BAK extract resulted in marked survival levels that were similar to those seen with SUG. Sweet waste extracts provided better substrates for survival compared to water, but this superiority was mostly seen with BAK. Females maintained on BAK, YOG, and BAN exhibited shorter response times to a host compared to their counterparts maintained on SUG. The levels of egg production were equivalent in waste extract- and SUG-fed females. The findings presented here illustrate the potential of sweet waste-derived fluids to contribute to the vectorial capacity of dengue vectors and suggest the necessity of readdressing the issue of waste disposal, especially that of unfinished sweet foods. Such approaches can be particularly relevant in dengue endemic areas where rainfall is frequent and waste collection infrequent.
    Matched MeSH terms: Aedes/physiology*
  4. Dieng H, Satho T, Binti Arzemi NA, Aliasan NE, Abang F, Wydiamala E, et al.
    Acta Trop, 2018 Sep;185:230-238.
    PMID: 29856985 DOI: 10.1016/j.actatropica.2018.05.019
    Food location by mosquitoes is mediated by resource-derived olfactory and visual signals. Smell sensation is intermittent and dependent on the environment, whereas visual signals are continual and precede olfactory cues. Success of mosquito bait technology, where olfactory cues are used for attraction, is being impeded by reduced attractiveness. Despite proof that mosquitoes respond to colored objects, including those mimicking floral shape, and that they can discriminate among flowers, the impacts of artificial flowers on foraging remain unexplored. Using artificial flowers with sugar rewards, we examined the foraging responses of Aedes aegypti to various colors in equal choice bioassays. Starved adults were exposed to single flowers with petals of a given color (Single Blue Flowers [SBFs]; Single Red Flowers [SRFs]; Single Yellow Flowers [SYFs]; Single Pink Flowers [SPIFs]; and Single Purple Flowers [SPFs]) and two others with white petals (SWFs). Discrepancies in response time, visitation, feeding, and resting of both sexes were compared between colored flowers and SWFs. Ae. aegypti exhibited shorter response times to colored flowers compared to SWFs, but this behavior was mostly seen for SBFs or SYFs in females, and SRFs, SYFs, SPIFs, or SPFs in males. When provided an option to land on colored flowers and SWFs, female visitation occurred at high rates on SBFs, SRFs, SYFs, SPIFs, and SPFs; for males, this preference for colored flowers was seen to a lesser degree on SBF and SPIFs. Both sexes exhibited preference for colored flowers as sugar sources, but with different patterns: SPIFs, SRFs, SYFs, and SPFs for females; SYFs, SPFs, SPIFs and SRFs for males. Females preferentially rested on colored flowers when in competition with SWFs, but this preference was more pronounced for SPFs, SRFs, and SBFs. Males exhibited an increased preference for SRFs, SPFs, and SYFs as resting sites. Our results indicated the attraction of Ae. aegypti to rewarding artificial flowers, in some cases in ways similar to live flowering plants. The discovery that both male and female Ae. aegypti can feed on nectar mimics held by artificial flowers opens new avenues for improving sugar bait technology and for developing new attract-and-kill devices.
    Matched MeSH terms: Aedes/physiology*
  5. Dieng H, Satho T, Suradi NFB, Hakim H, Abang F, Aliasan NE, et al.
    Acta Trop, 2017 Dec;176:446-454.
    PMID: 28865898 DOI: 10.1016/j.actatropica.2017.08.033
    In dengue vector control, attempts to minimize or replace the use of pesticides have mostly involved use of predators, but success has been severely impeded by difficulties associated with financial and environmental costs, predator mass production, and persistence in target habitats. Visual deterrents have been used successfully to control animal pests, in some cases in an effort to replace pesticide use. Despite evidence that visual signals are crucial in site choice for egg deposition by dengue vectors, and that female mosquitoes respond to artificial predation, the role of predator intimidation as it affects the oviposition behavior of dengue vectors remains largely unexplored. Here, we examined the oviposition responses of Aedes aegypti exposed to various mosquito predator pictures. Gravid females were presented with equal opportunities to oviposit in two cups with predator images [Toxorhynchites splendens-TXI, Goldfish (Carassius auratus)-small (SFI) and large (LFI) and Tx. splendens+Goldfish-TXFI] and two others without pictures. Differences in egg deposition were examined between sites with and without these images. When given a chance to oviposit in cups with and without TXI, Ae. aegypti females were similarly attracted to both sites. When provided an opportunity to oviposit in cups displaying pictures of fish (SFI or LFI) and blank cups, egg deposition rates were much lower in the fish picture sites. Females showed a preference for blank cups over TXFI for egg deposition. They also equally avoided cups with pictures of fish, regardless of the size of the picture. Our results indicate that the presence of images of goldfish and their association with Tx. larvae significantly reduced egg deposition by Ae. aegypti, and this was not the case with the predatory larvae alone. The observations that the images of natural predators can repel gravid females of a dengue vector provide novel possibilities to develop effective and inexpensive alternative tools to harmful insecticides.
    Matched MeSH terms: Aedes/physiology*
  6. Dieng H, Satho T, Meli NKKB, Abang F, Nolasco-Hipolito C, Hakim H, et al.
    Environ Sci Pollut Res Int, 2018 May;25(14):13833-13843.
    PMID: 29512008 DOI: 10.1007/s11356-017-1078-8
    Nectar is the staple diet of adult mosquitoes in the wild, but its availability is inconsistent and can be affected by rainfall. In urban centers, Aedes vectors commonly use man-made containers as their major habitat; however, they can colonize any items replenished by rainfall. Garbage output has increased significantly in recent years, at a time when collection frequency is reducing. Such garbage usually includes organic components, some of which are sweet and can be fed upon by other animals or become can containers for rainwater. Despite evidence that Aedes larvae can thrive in containers comprised of organic waste material, which can be produced by rodents gnawing on fruits or vegetables, and that adults can survive on sweet waste fluids, the capacity of organic waste materials to accumulate rainwater and act as egg deposition sites has not been examined. It is also unknown for how long sweet extracts can sustain the life of adult vectors. Here, we investigated the abundance of sweet leftovers at garbage sites and the rainwater retention capacity of some organic materials through a field survey and laboratory bioassays. We also examined whether sweet waste fluids impact egg hatching success and longevity of Aedes aegypti. The results of this study indicated that sweet products with leftovers are highly prevalent in garbage. When exposed to rain, food items (BAFrc, banana fruit resembling container; and BSPrc, boiled sweet potato resembling container) and the packaging of sweet foods (SMIc, sweetened condensed milk can) retained water. When provided an opportunity to oviposit in cups containing BAF extract (BAFex), BSP extract (BSPex), and SMI extract (SMIex), eggs were deposited in all media. Egg maturation in the BAFex environment resulted in similar larval eclosion success to that resulting from embryo development in a water milieu. Adults maintained on sweet waste extracts had long lifespans, although shorter than that of their sugar solution (SUS)-fed counterparts. Taken together, these results indicated that sweet waste materials are useful to dengue mosquitoes, acting both as oviposition sites and energy sources.
    Matched MeSH terms: Aedes/physiology*
  7. Dieng H, Satho T, Abang F, Miake F, Azman FAB, Latip NA, et al.
    Indian J Med Res, 2018 Sep;148(3):334-340.
    PMID: 30425225 DOI: 10.4103/ijmr.IJMR_1604_16
    Background & objectives: In sterile insect technology (SIT), mating competitiveness is a pre-condition for the reduction of target pest populations and a crucial parameter for judging efficacy. Still, current SIT trials are being hindered by decreased effectiveness due to reduced sexual performance of released males. Here, we explored the possible role of a herbal aphrodisiac in boosting the mating activity of Aedes aegypti.

    Methods: Males were fed one of two diets in this study: experimental extract of Eurycoma longifolia (MSAs) and sugar only (MSOs). Differences in life span, courtship latency, copulation activity and mating success were examined between the two groups.

    Results: No deaths occurred among MSA and MSO males. Life span of MSOs was similar to that of MSAs. The courtship latency of MSAs was shorter than that of MSOs (P<0.01). MSAs had greater copulation success than MSOs (P<0.001). In all female treatments, MSAs mated more than MSOs, but the differences in rate were significant only in the highest female density (P<0.05). In MSAs, mating success varied significantly with female density (P<0.01), with the 20-female group (P<0.01) having the lowest rate. Single MSA had better mating success at the two lowest female densities. In MSOs, there were no significant differences in mating success rate between the different female densities.

    Interpretation & conclusions: Our results suggested that the herbal aphrodisiac, E. longifolia, stimulated the sexual activity of Ae. aegypti and may be useful for improving the mating competitiveness of sterile males, thus improving SIT programmes.

    Matched MeSH terms: Aedes/physiology
  8. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, et al.
    PMID: 28748176 DOI: 10.3389/fcimb.2017.00317
    Dengue is an arthropod-borne infectious disease caused by dengue virus (DENV) infection and transmitted byAedesmosquitoes. Approximately 50-100 million people are infected with DENV each year, resulting in a high economic burden on both governments and individuals. Here, we conducted a systematic review and meta-analysis to summarize information regarding the epidemiology, clinical characteristics, and serotype distribution and risk factors for global dengue outbreaks occurring from 1990 to 2015. We searched the PubMed, Embase and Web of Science databases through December 2016 using the term "dengue outbreak." In total, 3,853 studies were identified, of which 243 studies describing 262 dengue outbreaks met our inclusion criteria. The majority of outbreak-associated dengue cases were reported in the Western Pacific Region, particularly after the year 2010; these cases were primarily identified in China, Singapore and Malaysia. The pooled mean age of dengue-infected individuals was 30.1 years; of the included patients, 54.5% were male, 23.2% had DHF, 62.0% had secondary infections, and 1.3% died. The mean age of dengue patients reported after 2010 was older than that of patients reported before 2010 (34.0 vs. 27.2 years); however, the proportions of patients who had DHF, had secondary infections and died significantly decreased after 2010. Fever, malaise, headache, and asthenia were the most frequently reported clinical symptoms and signs among dengue patients. In addition, among the identified clinical symptoms and signs, positive tourniquet test (OR= 4.86), ascites (OR= 13.91) and shock (OR= 308.09) were identified as the best predictors of dengue infection, DHF and mortality, respectively (bothP< 0.05). The main risk factors for dengue infection, DHF and mortality were living with uncovered water container (OR= 1.65), suffering from hypotension (OR= 6.18) and suffering from diabetes mellitus (OR= 2.53), respectively (allP< 0.05). The serotype distribution varied with time and across WHO regions. Overall, co-infections were reported in 47.7% of the evaluated outbreaks, and the highest pooled mortality rate (2.0%) was identified in DENV-2 dominated outbreaks. Our study emphasizes the necessity of implementing programs focused on targeted prevention, early identification, and effective treatment.
    Matched MeSH terms: Aedes/physiology
  9. Hamady D, Ruslan NB, Ahmad AH, Rawi CS, Ahmad H, Satho T, et al.
    Parasit Vectors, 2013;6:206.
    PMID: 23856274 DOI: 10.1186/1756-3305-6-206
    Mating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. In sterile and incompatible insect technologies (SIT and IIT), mating is essential for mass production, persistence, and success of released individuals, and is a central parameter for judging the effectiveness of SIT/IIT programs. Some mosquitoes have an enormous reproductive potential for both themselves and pathogens and mating may contribute to persistence of infection in nature. As Aedes albopictus can transmit flaviviruses both sexually and horizontally, and as infected insects are usually derived from laboratory colonies, we investigated the implications of mating between a long-term laboratory colony of Ae. albopictus and wild populations.
    Matched MeSH terms: Aedes/physiology*
  10. Hanson SM, Mutebi JP, Craig GB, Novak RJ
    J Am Mosq Control Assoc, 1993 Mar;9(1):78-83.
    PMID: 8468578
    Eggs of temperate Aedes albopictus populations are cold hardy and can diapause, but tropical populations are not cold hardy and cannot diapause. Heterozygotes possess intermediate diapause and cold hardiness. Males of a tropical strain from Malaysia with a distinctive genetic marker were released into an existing temperate population in East St. Louis, Illinois. Subsequent egg samples from the release site had genetic marker frequency of up to 24%. Reduced cold hardiness and decreased diapause incidence were also observed in the release site population. No such changes occurred at a nearby control site. The rank order of overwintering survival of eggs at the release site was: Aedes triseriatus > temperate Ae. albopictus > hybrid temperate/tropical Ae. albopictus > tropical Ae. albopictus. Eggs collected from the release population the next summer showed total absence of the genetic marker; presumably carriers were removed by the winter.
    Matched MeSH terms: Aedes/physiology
  11. Hoang KP, Teo TM, Ho TX, Le VS
    Parasit Vectors, 2016 Jan 28;9:49.
    PMID: 26818000 DOI: 10.1186/s13071-016-1331-x
    BACKGROUND: More effective mosquito control strategies are urgently required due to the increasing prevalence of insecticide resistance. The sterile insect technique (SIT) and the release of insects carrying a dominant lethal allele (RIDL) are two proposed methods for environmentally-friendly, species-targeted population control. These methods may be more suitable for developing countries if producers reduce the cost of rearing insects. The cost of control programs could be reduced by producing all-male mosquito populations to circumvent the isolation of females before release without reducing male mating competitiveness caused by transgenes.

    RESULTS: An RNAi construct targeting the RNA recognition motif of the Aedes aegypti transformer-2 (tra-2) gene does not trigger female-to-male sex conversion as commonly observed among dipterous insects. Instead, homozygous insects show greater mortality among m-chromosome-bearing sperm and mm zygotes, yielding up to 100% males in the subsequent generations. The performance of transgenic males was not significantly different to wild-type males in narrow-cage competitive mating experiments.

    CONCLUSION: Our data provide preliminary evidence that the knockdown of Ae. aegypti tra-2 gene expression causes segregation distortion acting at the level of gametic function, which is reinforced by sex-specific zygotic lethality. This finding could promote the development of new synthetic sex distorter systems for the production of genetic sexing mosquito strains.

    Matched MeSH terms: Aedes/physiology*
  12. Kua KP, Lee SWH
    PLoS One, 2021;16(1):e0244284.
    PMID: 33417600 DOI: 10.1371/journal.pone.0244284
    BACKGROUND: Mosquito-borne diseases remain a significant public health problem in tropical regions. Housing improvements such as screening of doors and windows may be effective in reducing disease transmission, but the impact remains unclear.

    OBJECTIVES: To examine whether housing interventions were effective in reducing mosquito densities in homes and the impact on the incidence of mosquito-borne diseases.

    METHODS: In this systematic review and meta-analysis, we searched 16 online databases, including NIH PubMed, CINAHL Complete, LILACS, Ovid MEDLINE, and Cochrane Central Register of Controlled Trials for randomized trials published from database inception to June 30, 2020. The primary outcome was the incidence of any mosquito-borne diseases. Secondary outcomes encompassed entomological indicators of the disease transmission. I2 values were used to explore heterogeneity between studies. A random-effects meta-analysis was used to assess the primary and secondary outcomes, with sub-group analyses for type of interventions on home environment, study settings (rural, urban, or mixed), and overall house type (traditional or modern housing).

    RESULTS: The literature search yielded 4,869 articles. After screening, 18 studies were included in the qualitative review, of which nine were included in the meta-analysis. The studies enrolled 7,200 households in Africa and South America, reporting on malaria or dengue only. The type of home environmental interventions included modification to ceilings and ribbons to close eaves, screening doors and windows with nets, insecticide-treated wall linings in homes, nettings over gables and eaves openings, mosquito trapping systems, metal-roofed houses with mosquito screening, gable windows and closed eaves, and prototype houses using southeast Asian designs. Pooled analysis depicted a lower risk of mosquito-borne diseases in the housing intervention group (OR = 0.68; 95% CI = 0.48 to 0.95; P = 0.03). Subgroup analysis depicted housing intervention reduced the risk of malaria in all settings (OR = 0.63; 95% CI = 0.39 to 1.01; P = 0.05). In urban environment, housing intervention was found to decrease the risk of both malaria and dengue infections (OR = 0.52; 95% CI = 0.27 to 0.99; P = 0.05).Meta-analysis of pooled odds ratio showed a significant benefit of improved housing in reducing indoor vector densities of both Aedes and Anopheles (OR = 0.35; 95% CI = 0.23 to 0.54; P<0.001).

    CONCLUSIONS: Housing intervention could reduce transmission of malaria and dengue among people living in the homes. Future research should evaluate the protective effect of specific house features and housing improvements associated with urban development.

    Matched MeSH terms: Aedes/physiology
  13. Lau SM, Chua TH, Sulaiman WY, Joanne S, Lim YA, Sekaran SD, et al.
    Parasit Vectors, 2017 Mar 21;10(1):151.
    PMID: 28327173 DOI: 10.1186/s13071-017-2091-y
    BACKGROUND: Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics.

    METHODS: We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored.

    RESULTS: Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall.

    CONCLUSION: Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.

    Matched MeSH terms: Aedes/physiology*
  14. Lee HL, Aramu M, Nazni WA, Selvi S, Vasan S
    Trop Biomed, 2009 Dec;26(3):312-9.
    PMID: 20237445
    The natural and artificial mating of laboratory bred Aedes albopictus and transgenic Aedes aegypti RIDL-513A-Malaysian strain was conducted. The experiment consisted of crossmating of homologous Ae. aegypti RIDL female symbol X Ae. aegypti RIDL male symbol and reciprocal Ae. aegypti RIDL female symbol X Ae. albopictus WT male symbol. The other set comprised homologous Ae. albopictus WT female symbol X Ae. albopictus WT male symbol and reciprocal Ae. albopictus WT female symbol X Ae. aegypti RIDL male symbol. This study demonstrated that reproductive barriers exist between these two species. Cross insemination occurred between A. albopictus male and Ae. aegypti female and their reciprocals. There was 26.67% and 33.33% insemination rate in Ae. aegypti RIDL female cross-mating with A. albopictus WT male and Ae. albopictus female cross-mating with Ae. aegypti RIDL male, respectively. There was 0% hatchability in both directions of the reciprocals. There was also no embryonation of these eggs which were bleached. Although none of the female Ae. albopictus WT was inseminated in the cross-mating with Ae. albopictus WT female symbol X Ae. aegypti RIDL male symbol, a total of 573 eggs were obtained. The homologous mating was very productive resulting in both high insemination rate and hatchability rates. Generally there was a significantly higher insemination rate with artificial mating insemination of homologous than with artificial mating of reciprocal crosses. Interspecific mating between Ae. aegypti RIDL and Ae. albopictus wild type was not productive and no hybrid was obtained, indicating absence of horizontal transfer of introduced RIDL gene in Ae. aegypti to Ae. albopictus.
    Matched MeSH terms: Aedes/physiology*
  15. Liew JWK, Selvarajoo S, Tan W, Ahmad Zaki R, Vythilingam I
    Infect Dis Poverty, 2019 Sep 03;8(1):71.
    PMID: 31477185 DOI: 10.1186/s40249-019-0584-y
    BACKGROUND: Dengue is a global disease, transmitted by the Aedes vectors. In 2018, there were 80 615 dengue cases with 147 deaths in Malaysia. Currently, the nationwide surveillance programs are dependent on Aedes larval surveys and notifications of lab-confirmed human infections. The existing, reactive programs appear to lack sensitivity and proactivity. More efficient dengue vector surveillance/control methods are needed.

    METHODS: A parallel, cluster, randomized controlled, interventional trial is being conducted for 18 months in Damansara Damai, Selangor, Malaysia, to determine the efficacy of using gravid oviposition sticky (GOS) trap and dengue non-structural 1 (NS1) antigen test for early surveillance of dengue among Aedes mosquitoes to reduce dengue outbreaks. Eight residential apartments were randomly assigned into intervention and control arms. GOS traps are set at the apartments to collect Aedes weekly, following which dengue NS1 antigen is detected in these mosquitoes. When a dengue-positive mosquito is detected, the community will be advised to execute vector search-and-destroy and protective measures. The primary outcome concerns the the percentage change in the (i) number of dengue cases and (ii) durations of dengue outbreaks. Whereas other outcome measures include the change in density threshold of Aedes and changes in dengue-related knowledge, attitude and practice among cluster inhabitants.

    DISCUSSION: This is a proactive and early dengue surveillance in the mosquito vector that does not rely on notification of dengue cases. Surveillance using the GOS traps should be able to efficiently provide sufficient coverage for multistorey dwellings where population per unit area is likely to be higher. Furthermore, trapping dengue-infected mosquitoes using the GOS trap, helps to halt the dengue transmission carried by the mosquito. It is envisaged that the results of this randomized controlled trial will provide a new proactive, cheap and targeted surveillance tool for the prevention and control of dengue outbreaks.

    TRIAL REGISTRATION: This is a parallel-cluster, randomized controlled, interventional trial, registered at ClinicalTrials.gov (ID: NCT03799237), on 8th January 2019 (retrospectively registered).

    Matched MeSH terms: Aedes/physiology*
  16. Lim KW, Sit NW, Norzahira R, Sing KW, Wong HM, Chew HS, et al.
    Trop Biomed, 2010 Aug;27(2):185-92.
    PMID: 20962714 MyJurnal
    A year-long ovitrap surveillance was conducted between November 2007 and October 2008 in two insular settlements (Kampung Pulau Ketam and Kampung Sungai Lima) within the Malaysian island of Pulau Ketam. Eighty standard ovitraps were placed indoors and outdoors of randomly selected houses/locations. Results demonstrated an endemic baseline Aedes population throughout the year without weekly large fluctuations. Kampung Pulau Ketam has high Aedes aegypti and Aedes albopictus population, but only Ae. aegypti was found in Kampung Sungai Lima. Aedes aegypti showed no preference for ovitraps placed indoor versus outdoor. However, as expected, significantly more outdoor ovitraps were positive for Ae. albopictus (p<0.05). Trends in Ae. albopictus and Ae. aegypti populations mirrored each other suggesting that common factors influenced these two populations.
    Matched MeSH terms: Aedes/physiology*
  17. Ling CY, Gruebner O, Krämer A, Lakes T
    Geospat Health, 2014 Nov;9(1):131-40.
    PMID: 25545931
    Spatio-temporal patterns of dengue risk in Malaysia were studied both at the address and the sub-district level in the province of Selangor and the Federal Territory of Kuala Lumpur. We geocoded laboratory-confirmed dengue cases from the years 2008 to 2010 at the address level and further aggregated the cases in proportion to the population at risk at the sub-district level. Kulldorff's spatial scan statistic was applied for the investigation that identified changing spatial patterns of dengue cases at both levels. At the address level, spatio-temporal clusters of dengue cases were concentrated at the central and south-eastern part of the study area in the early part of the years studied. Analyses at the sub-district level revealed a consistent spatial clustering of a high number of cases proportional to the population at risk. Linking both levels assisted in the identification of differences and confirmed the presence of areas at high risk for dengue infection. Our results suggest that the observed dengue cases had both a spatial and a temporal epidemiological component, which needs to be acknowledged and addressed to develop efficient control measures, including spatially explicit vector control. Our findings highlight the importance of detailed geographical analysis of disease cases in heterogeneous environments with a focus on clustered populations at different spatial and temporal scales. We conclude that bringing together information on the spatio-temporal distribution of dengue cases with a deeper insight of linkages between dengue risk, climate factors and land use constitutes an important step towards the development of an effective risk management strategy.
    Matched MeSH terms: Aedes/physiology
  18. Marcela P, Hassan AA, Hamdan A, Dieng H, Kumara TK
    J Am Mosq Control Assoc, 2015 Dec;31(4):313-20.
    PMID: 26675452 DOI: 10.2987/moco-31-04-313-320.1
    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs.
    Matched MeSH terms: Aedes/physiology*
  19. Mincham G, Baldock KL, Rozilawati H, Williams CR
    Epidemiol Infect, 2019 01;147:e125.
    PMID: 30869038 DOI: 10.1017/S095026881900030X
    Dengue infection in China has increased dramatically in recent years. Guangdong province (main city Guangzhou) accounted for more than 94% of all dengue cases in the 2014 outbreak. Currently, there is no existing effective vaccine and most efforts of control are focused on the vector itself. This study aimed to evaluate different dengue management strategies in a region where this disease is emerging. This work was done by establishing a dengue simulation model for Guangzhou to enable the testing of control strategies aimed at vector control and vaccination. For that purpose, the computer-based dengue simulation model (DENSiM) together with the Container-Inhabiting Mosquito Simulation Model (CIMSiM) has been used to create a working dengue simulation model for the city of Guangzhou. In order to achieve the best model fit against historical surveillance data, virus introduction scenarios were run and then matched against the actual dengue surveillance data. The simulation model was able to predict retrospective outbreaks with a sensitivity of 0.18 and a specificity of 0.98. This new parameterisation can now be used to evaluate the potential impact of different control strategies on dengue transmission in Guangzhou. The knowledge generated from this research would provide useful information for authorities regarding the historic patterns of dengue outbreaks, as well as the effectiveness of different disease management strategies.
    Matched MeSH terms: Aedes/physiology
  20. Mohamad N, Zuharah WF
    Trop Biomed, 2014 Mar;31(1):166-73.
    PMID: 24862057 MyJurnal
    Toxorhynchites splendens larvae are a natural predator of dengue vector mosquito larvae, Aedes albopictus. This study was carried out to evaluate the predation rate of Tx. splendens third instar larvae on Ae. albopictus larvae in 24 h. Each predator was offered prey at a density between 10 to 50 individuals. Predation rate of Tx. splendens were also tested with two manipulated factors; various types of container and different water volumes. The experiment was evaluated in man-made containers (tin cans, plastic drinking glasses and rubber tires) and natural container (bamboo stumps) which were filled with different water volumes (full, half full, 1/4 full, and 1/8 full). The prey density and the characteristics of the container were found as significant factors which influence the predation rate of Tx. splendens. The predator consumed significantly more prey at higher prey densities (40 and 50 preys) compared to the lowest density (10 preys) (F=3.935, df=4, p=0.008). The results showed significantly higher consumption in horizontal shaped container of rubber tire than in vertical shape of bamboo stumps (F=3.100, df=3, p=0.029). However, the water volume had no significant effect on predation rate of Tx. splendens (F=1.736, df=3, p=0.162). We generally suggest that Tx. splendens is best to be released in discarded tires or any other containers with horizontal shape design with wide opening since Tx. splendens can become more effective in searching prey in this type of container design. This predator is also a suitable biocontrol candidates to be introduced either in wet and dry seasons in Malaysia.
    Matched MeSH terms: Aedes/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links