Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. AbuBakar S, Shu MH, Johari J, Wong PF
    Int J Med Sci, 2014;11(6):538-44.
    PMID: 24782642 DOI: 10.7150/ijms.7896
    Alteration in the endothelium leading to increased vascular permeability contributes to plasma leakage seen in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). An earlier study showed that senescent endothelial cells (ECs) altered the ECs permeability. Here we investigated the susceptibility of senescing human umbilical vein endothelial cells (HUVECs) to dengue virus infection and determined if dengue virus infection induces HUVECs senescence. Our results suggest that DENV type-2 (DENV-2) foci forming unit (FFU) and extracellular virus RNA copy number were reduced by at least 35% and 85% in infection of the intermediate young and early senescent HUVECs, respectively, in comparison to infection of young HUVECs. No to low infectivity was recovered from infection of late senescent HUVECs. DENV infection also increases the percentage of HUVECs expressing senescence-associated (SA)-β-gal, cells arrested at the G2/M phase or 4N DNA content stage and cells with enlarged morphology, indicative of senescing cells. Alteration of HUVECs morphology was recorded using impedance-based real-time cell analysis system following DENV-2 infection. These results suggest that senescing HUVECs do not support DENV infection and DENV infection induces HUVECs senescence. The finding highlights the possible role of induction of senescence in DENV infection of the endothelial cells.
    Matched MeSH terms: Cell Aging/genetics*
  2. Abdul Rahman A, Abdul Karim N, Abdul Hamid NA, Harun R, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:189129.
    PMID: 24381713 DOI: 10.1155/2013/189129
    Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs) from two groups: octo/nonagenarians (80-99 years old) and their offspring (50.2 ± 4.0 years old) revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1), cell cycle regulation (CDKN1B), metabolic process (LRPAP1), insulin action (IGF2R), and increased immune and inflammatory response (IL27RA), whereas response to stress (HSPA8), damage stimulus (XRCC6), and chromatin remodelling (TINF2) pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.
    Matched MeSH terms: Cell Aging/genetics*
  3. Eshkoor SA, Marashi SJ, Ismail P, Rahman SA, Mirinargesi M, Adon MY, et al.
    Genet. Mol. Res., 2012;11(2):1486-96.
    PMID: 22653598 DOI: 10.4238/2012.May.21.5
    We evaluated the possible influence of glutathione S-transferase mu (GSTM1) and glutathione S-transferase theta (GSTT1) genes on genetic damage due to occupational exposure, which contributes to accelerate ageing. This study was conducted on 120 car auto repair workshop workers exposed to occupational hazards and 120 controls without this kind of exposure. The null and non-null genotypes of GSTM1 and GSTT1 genes were determined by multiplex PCR. Micronucleus frequency, Comet tail length and relative telomere length differences between the null and non-null genotypes of the GSTM1 gene were significantly greater in the exposed group. Lack of GSTT1 did not affect the damage biomarkers significantly (P > 0.05), while lack of GSTM1 was associated with greater susceptibility to genomic damage due to occupational exposure. It was concluded that early ageing is under the influence of these genes and the environmental and socio-demographic factors. Duration of working time was significantly associated with micronucleus frequency, Comet tail length and relative telomere length.
    Matched MeSH terms: Aging/genetics
  4. Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, et al.
    Nat Commun, 2016 06 13;7:11843.
    PMID: 27291797 DOI: 10.1038/ncomms11843
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
    Matched MeSH terms: Aging/genetics*
  5. Law YH
    Science, 2021 Mar 26;371(6536):1302-1305.
    PMID: 33766870 DOI: 10.1126/science.371.6536.1302
    Matched MeSH terms: Aging/genetics
  6. Imran SAM, Yazid MD, Idrus RBH, Maarof M, Nordin A, Razali RA, et al.
    Int J Mol Sci, 2021 Apr 09;22(8).
    PMID: 33918710 DOI: 10.3390/ijms22083888
    Epithelial-Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.
    Matched MeSH terms: Aging/genetics*
  7. Makkar SR, Lipnicki DM, Crawford JD, Kochan NA, Castro-Costa E, Lima-Costa MF, et al.
    J Gerontol A Biol Sci Med Sci, 2020 09 25;75(10):1863-1873.
    PMID: 32396611 DOI: 10.1093/gerona/glaa116
    We aimed to examine the relationship between Apolipoprotein E ε4 (APOE*4) carriage on cognitive decline, and whether these associations were moderated by sex, baseline age, ethnicity, and vascular risk factors. Participants were 19,225 individuals aged 54-103 years from 15 longitudinal cohort studies with a mean follow-up duration ranging between 1.2 and 10.7 years. Two-step individual participant data meta-analysis was used to pool results of study-wise analyses predicting memory and general cognitive decline from carriage of one or two APOE*4 alleles, and moderation of these associations by age, sex, vascular risk factors, and ethnicity. Separate pooled estimates were calculated in both men and women who were younger (ie, 62 years) and older (ie, 80 years) at baseline. Results showed that APOE*4 carriage was related to faster general cognitive decline in women, and faster memory decline in men. A stronger dose-dependent effect was observed in older men, with faster general cognitive and memory decline in those carrying two versus one APOE*4 allele. Vascular risk factors were related to an increased effect of APOE*4 on memory decline in younger women, but a weaker effect of APOE*4 on general cognitive decline in older men. The relationship between APOE*4 carriage and memory decline was larger in older-aged Asians than Whites. In sum, APOE*4 is related to cognitive decline in men and women, although these effects are enhanced by age and carriage of two APOE*4 alleles in men, a higher numbers of vascular risk factors during the early stages of late adulthood in women, and Asian ethnicity.
    Matched MeSH terms: Aging/genetics*
  8. Kong PL, Looi LM, Lau TP, Cheah PL
    PLoS One, 2016;11(9):e0161720.
    PMID: 27598341 DOI: 10.1371/journal.pone.0161720
    Telomeres shorten with physiological aging but undergo substantial restoration during cancer immortalization. Increasingly, cancer studies utilize the archive of formalin-fixed, paraffin-embedded (FFPE) tissues in diagnostic pathology departments. Conceptually, such studies would be confounded by physiological telomere attrition and loss of DNA integrity from prolonged tissue storage. Our study aimed to investigate these two confounding factors. 145 FFPE tissues of surgically-resected, non-diseased appendixes were retrieved from our pathology archive, from years 2008 to 2014. Cases from 2013 to 2014 were categorized by patient chronological age (0-20 years, 21-40 years, 41-60 years, > 60 years). Telomere lengths of age categories were depicted by telomere/chromosome 2 centromere intensity ratio (TCR) revealed by quantitative fluorescence in situ hybridization. Material from individuals aged 0-20 years from years 2013/2014, 2011/2012, 2009/2010, and 2008 were compared for storage effect. Telomere integrity was assessed by telomere fluorescence intensity (TFI). Epithelial TCRs (mean ± SD) for the respective age groups were 4.84 ± 2.08, 3.64 ± 1.21, 2.03 ± 0.37, and 1.93 ± 0.45, whereas corresponding stromal TCRs were 5.16 ± 2.55, 3.84 ± 1.36, 2.49 ± 1.20, and 2.93 ± 1.24. A trend of inverse correlation with age in both epithelial and stromal tissues is supported by r = -0.69, p < 0.001 and r = -0.42, p < 0.001 respectively. Epithelial TFIs (mean ± SD) of years 2013/2014, 2011/2012, 2009/2010 and 2008 were 852.60 ± 432.46, 353.04 ± 127.12, 209.24 ± 55.57 and 429.22 ± 188.75 respectively. Generally, TFIs reduced with storage duration (r = -0.42, p < 0.001). Our findings agree that age-related telomere attrition occurs in normal somatic tissues, and suggest that an age-based reference can be established for telomere studies on FFPE tissues. We also showed that FFPE tissues archived beyond 2 years are suboptimal for telomere analysis.
    Matched MeSH terms: Aging/genetics*
  9. Abdul Sani NF, Amir Hamzah AIZ, Abu Bakar ZH, Mohd Yusof YA, Makpol S, Wan Ngah WZ, et al.
    Cells, 2021 06 27;10(7).
    PMID: 34199148 DOI: 10.3390/cells10071611
    The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
    Matched MeSH terms: Aging/genetics*
  10. Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK
    Cancer Lett, 2021 10 10;518:102-114.
    PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025
    This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
    Matched MeSH terms: Cell Aging/genetics
  11. Chadda KR, Ahmad S, Valli H, den Uijl I, Al-Hadithi AB, Salvage SC, et al.
    Sci Rep, 2017 09 11;7(1):11070.
    PMID: 28894151 DOI: 10.1038/s41598-017-11210-3
    Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to β-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following β-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p 
    Matched MeSH terms: Aging/genetics*
  12. Li T, Pappas C, Le ST, Wang Q, Klinedinst BS, Larsen BA, et al.
    Neurobiol Aging, 2022 Jan;109:158-165.
    PMID: 34740077 DOI: 10.1016/j.neurobiolaging.2021.09.020
    The Apolipoprotein E ε4 (APOE ε4) haplotype is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The Translocase of Outer Mitochondrial Membrane-40 (TOMM40) gene maintains cellular bioenergetics, which is disrupted in AD. TOMM40 rs2075650 ('650) G versus A carriage is consistently related to neural and cognitive outcomes, but it is unclear if and how it interacts with APOE. We examined 21 orthogonal neural networks among 8,222 middle-aged to aged participants in the UK Biobank cohort. ANOVA and multiple linear regression tested main effects and interactions with APOE and TOMM40 '650 genotypes, and if age and sex acted as moderators. APOE ε4 was associated with less strength in multiple networks, while '650 G versus A carriage was related to more language comprehension network strength. In APOE ε4 carriers, '650 G-carriage led to less network strength with increasing age, while in non-G-carriers this was only seen in women but not men. TOMM40 may shift what happens to network activity in aging APOE ε4 carriers depending on sex.
    Matched MeSH terms: Aging/genetics
  13. Mohamad Nasir NF, Zainuddin A, Shamsuddin S
    J Mol Neurosci, 2018 Feb;64(2):157-161.
    PMID: 29260452 DOI: 10.1007/s12031-017-1005-y
    Alzheimer's disease (AD) is a neurodegenerative disease that is imposing an increasing burden on society. Currently, AD is the leading cause of senile dementia worldwide. Despite the long existence of AD, there is lack of therapies for AD, suggesting that new and effective treatment strategy must be explored. At present, sirtuin pathway has attracted attention from the researchers due to its promising results in laboratory models of aging. In addition, our understanding in the roles of sirtuin 6 in AD has expanded. It has been identified to be involved in telomere maintenance, DNA repair, genome integrity, energy metabolism, and inflammation, which ultimately regulate life span. Recent findings also demonstrate that sirtuin 6 is lacking in AD patients, proposing that it can be a new potential therapeutic target in AD. Therefore, exploring on how sirtuin 6 is related in AD manifestation may accelerate the research of AD further and benefits future AD patients. Keeping that in mind, this review aims to highlight the possible roles of sirtuin 6 in AD manifestation.
    Matched MeSH terms: Aging/genetics
  14. Rajendran P, Alzahrani AM, Hanieh HN, Kumar SA, Ben Ammar R, Rengarajan T, et al.
    J Cell Physiol, 2019 12;234(12):21485-21492.
    PMID: 31144309 DOI: 10.1002/jcp.28895
    Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.
    Matched MeSH terms: Aging/genetics; Cell Aging/genetics
  15. Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A
    Mol Neurobiol, 2023 Aug;60(8):4169-4183.
    PMID: 37046137 DOI: 10.1007/s12035-023-03337-4
    Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
    Matched MeSH terms: Aging/genetics
  16. Wong PF, Dharmani M, Ramasamy TS
    Drug Discov Today, 2023 Jan;28(1):103424.
    PMID: 36332835 DOI: 10.1016/j.drudis.2022.103424
    Mesenchymal stem cells (MSCs) are susceptible to replicative senescence and senescence-associated functional decline, which hampers their use in regenerative medicine. Senotherapeutics are drugs that target cellular senescence through senolytic and senomorphic functions to induce apoptosis and suppress chronic inflammation caused by the senescence-associated secreted phenotype (SASP), respectively. Therefore, senotherapeutics could delay aging-associated degeneration. They could also be used to eliminate senescent MSCs during in vitro expansion or bioprocessing for transplantation. In this review, we discuss the role of senotherapeutics in MSC senescence, rejuvenation, and transplantation, with examples of some tested compounds in vitro. The prospects, challenges, and the way forward in clinical applications of senotherapeutics in cell-based therapeutics are also discussed.
    Matched MeSH terms: Cell Aging/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links