Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Darvishi B, Dinarvand R, Mohammadpour H, Kamarul T, Sharifi AM
    Mol Pharm, 2021 09 06;18(9):3302-3325.
    PMID: 34297586 DOI: 10.1021/acs.molpharmaceut.1c00248
    Microvascular complications are among the major outcomes of patients with type II diabetes mellitus, which are the consequences of impaired physiological functioning of small blood vessels and angiogenic responses in these patients. Overproduction and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl byproduct of glycolysis pathway, has been acclaimed as the main inducer of impaired angiogenic responses and microvascular dysfunction in diabetic patients with uncontrolled hyperglycemia. Hence, an effective approach to overcome diabetes-associated microvascular complications is to neutralize the deleterious activity of enhanced the concentration of MGO in the body. Owing to the glycation inhibitory activity of Aloe vera whole extract, and capability of l-carnosine, an endogenous dipeptide, in attenuating MGO's destructive activity, we examined whether application of a combination of l-carnosine and A. vera could be an effective way of synergistically weakening this reactive dicarbonyl's impaired angiogenic effects. Additionally, overcoming the poor cellular uptake and internalization of l-carnosine and A. vera, a nanophytosomal formulation of the physical mixture of two compounds was also established. Although l-carnosine and A. vera at whole studied combination ratios could synergistically enhance viability of human umbilical vein endothelial cells (HUVECs) treated with MGO, the 25:1 w/w ratio was the most effective one among the others (27 ± 0.5% compared to 12 ± 0.3 to 18 ± 0.4%; F (4, 15) = 183.9, P < 0.0001). Developing dual nanophytosomes of l-carnosine/A. vera (25:1) combination ratio, we demonstrated superiority of the nanophytosomal formulation in protecting HUVECs against MGO-induced toxicity following a 24-72 h incubation period (17.3, 15.8, and 12.4% respectively). Moreover, 500 μg/mL concentration of dual l-carnosine/A. vera nanophytosomes exhibited a superior free radical scavenging potency (63 ± 4 RFU vs 83 ± 5 RFU; F (5, 12) = 54.81, P < 0.0001) and nitric oxide synthesizing capacity (26.11 ± 0.19 vs 5.1 ± 0.33; F (5, 12) = 2537, P < 0.0001) compared to their physical combination counterpart. Similarly, 500 μg/mL dual l-carnosine/A. vera nanophytosome-treated HUVECs demonstrated a superior tube formation capacity (15 ± 3 vs 2 ± 0.3; F (5, 12) = 30.87, P < 0.001), wound scratch healing capability (4.92 ± 0.3 vs 3.07 ± 0.3 mm/h; F (5, 12) = 39.21, P < 0.0001), and transwell migration (586 ± 32 vs 394 ± 18; F (5, 12) = 231.8, P < 0.001) and invasion (172 ± 9 vs 115 ± 5; F (5, 12) = 581.1, P < 0.0001) activities compared to the physical combination treated ones. Further confirming the proangiogenic activity of the dual l-carnosine/A. vera nanophytosomes, a significant shift toward expression of proangiogenic genes including HIF-1α, VEGFA, bFGF, KDR, and Ang II was reported in treated HUVECs. Overall, dual l-carnosine/A. vera nanophytosomes could be a potential candidate for attenuating type II DM-associated microvascular complications with an impaired angiogenesis background.
    Matched MeSH terms: Aloe/chemistry
  2. Balaji A, Jaganathan SK, Supriyanto E, Muhamad II, Khudzari AZ
    Int J Nanomedicine, 2015;10:5909-23.
    PMID: 26425089 DOI: 10.2147/IJN.S84307
    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.
    Matched MeSH terms: Aloe/chemistry*
  3. Amin, I.M., Sheikh Abdul Kadir, S.H., Isa, M.R., Rosdy. N.M.M.N.M., Hasani NAH
    JUMMEC, 2016;19(1):1-10.
    MyJurnal
    The positive response to tamoxifen in ERa-positive breast cancer patients is usually of a short duration as many
    of the patients eventually develop resistance. Our preliminary results show that aloe emodin extracted from
    the leaves of the Aloe barbadensis Miller demonstrated a cytotoxicity that is selective to ERa-positive breast
    cancer cells (MCF-7), but not to ERa-negative breast cancer cells (MDA-MB-231) and to the control cells (MCF-
    10A). The objective of this study was to test the hypothesis that aloe emodin may enhance the response of
    MCF-7 cells to treatment with tamoxifen. MCF-7 cells were treated with aloe emodin alone, tamoxifen alone
    or a combination of emodin and tamoxifen, at their respective IC50 concentrations and at different time points
    of 24 hours, 48 hours and 72 hours. The respective IC50s were the concentrations of aloe emodin and tamoxifen
    required to achieve 50% inhibition of the cells in the study. Cell viability and apoptosis were determined using
    trypan blue exclusion and DNA fragmentation assays, respectively. The involvement of RAS/MEKs/ERKs genes
    of MAPK signalling pathways with aloe emodin was determined using QuantiGene 2.0 Plex assay. Data was
    evaluated using the one-way ANOVA test. Our findings showed that aloe emodin enhanced the cytotoxicity of
    tamoxifen on MCF-7 cells through apoptosis by downregulation of MEK1/2 genes. Our research may provide a
    rational basis for further in vivo studies to verify the efficacy of a combination of aloe emodin and tamoxifen
    on the viability of ERa-positive-breast cancer cells.
    Matched MeSH terms: Aloe
  4. Kew, Siang-Tong
    MyJurnal
    Melanosis coli denotes brownish discoloration of the colonic mucosa found on endoscopy
    or histopathologic examination. The condition has no specific symptom on its own. It is a fairly frequent incidental finding of colonic biopsies and resection specimens. The pigmentation is caused by apoptotic cells which are ingested by macrophages and subsequently transported into the lamina propria, where lysosomes use them to produce lipofuscin pigment, not melanin as the name suggests. Melanosis coli develops in over 70% of persons who use anthraquinone laxatives (eg cascara sagrada, aloe, senna, rhubarb, and frangula), often within 4 months of use. Long-term use is generally believed to be necessary to cause melanosis coli.The condition is widely regarded as benign and reversible, and disappearance of the pigment generally occurs within a year of stopping laxatives. Although
    often due to prolonged use of anthraquinone, melanosis can probably result from other factors or exposure to other laxatives. It has been reported as a consequence of longstanding inflammatory bowel disease. Some investigators suggested that increase in apoptosis of
    colonic mucosa by anthraquinone laxatives increased the risk of colonic cancer. Recent data, including those from large-scale retrospective, prospective and experimental studies, did not show any increased cancer risk.
    Matched MeSH terms: Aloe
  5. Soliman A, Teoh SL, Ghafar N, Das S
    Mini Rev Med Chem, 2018 Oct 25.
    PMID: 30360709 DOI: 10.2174/1389557518666181025155204
    The incidence of diabetes mellitus (DM) is increasing worldwide. One of the main complications in DM is delayed wound healing which often requires amputation. Various drugs have been used to treat DM but they present with various complications and patients often do not comply with such treatment. This opens the door for complementary and alternative medicine. In the present review, we explore the molecular concept of wound healing occurring in different stages with special emphasis to DM. We also highlight potential herbal products such as NF3 (Chinese 2-Herb Formula), Zicao, Jing Wan Hong ointment, mixture of Adiantum capillus-veneris, Commiphora molmol, Aloe Vera, and henna, Aleo vera, Phenol-rich compound sweet gel, Jinchuang ointment, San-huang-sheng-fu (S) oil, Yi Bu A Jie extract, Astragali Radix (AR) and Rehmanniae Radix (RR), Yiqi Huayu, Tangzu yuyang ointment, Shengji Huayu recipe, Angelica sinensis, Lithospermun erythrorhison, Hippophae rhamnoides L., Curcuma longa, and Momordica charantia that could be effectively used to treat DM wounds. Future clinical trials are needed for designing potential drugs which may be effective in treating DM wounds.
    Matched MeSH terms: Aloe
  6. Aiza Izyani Aminuddin, Siti Suraiya, Ruzilawati Abu Bakar
    MyJurnal
    Acne vulgaris is a typical skin disorder among adolescence, causing inflammation of pilosebaceous follicle
    which characterized by comedones, papules, pustules, cysts, nodules and often scars in face, neck, upper trunk
    and arms. Propionibacterium acnes and Staphylococcus epidermidis have been recognized that play as a major
    role in acne formation. This study was conducted to compare the antimicrobial activity of five plant extracts
    namely Piper betle, Aloe vera, Solanum lycopersicum, Cinnamomum zeylanicum and Cucumis sativus against P.
    acnes and S. epidermidis. The well diffusion assay was used to determine the sensitivity of the samples, while
    the liquid dilution method was used for the determination of the minimal inhibition concentration (MIC). The
    result showed a remarkable antibacterial activity of Piper betle extract compared to other plant extracts and
    Doxycycline (positive control) against both of acne-inducing bacteria, P. acnes and S. epidermidis.
    Matched MeSH terms: Aloe
  7. Rasli NI, Basri H, Harun Z
    Heliyon, 2020 Jan;6(1):e03156.
    PMID: 32042952 DOI: 10.1016/j.heliyon.2020.e03156
    Zinc oxide (ZnO) was biosynthesised from aloe vera plant extract. The aloe vera plant extract was used as a reducing agent in biosynthesis process. Green synthesis method was proposed because it is cost effective and environmentally friendly. ZnO was characterised using SEM, EDX, FTIR, and XRD analyses. The antibacterial property was tested against Escherichia coli. The effects of aloe vera volume (2-50) mL, precursor concentration (0.001-0.300) M, reaction time (20 min-48 h), and temperature of the reaction (26-200) °C on ZnO characteristics were investigated and screened using a two-level factorial method. Based on the observation and ANOVA analysis result, precursor concentration was the only significant parameter that affected the production of the ZnO nanoparticles (NPs). The EDX analysis proved the presence of ZnO while the SEM analysis confirmed the average size of ZnO particle size was in the range of (18-618) μm with a rod-shape appearance. The XRD analysis showed that the average crystallite size was 0.452 μm and it was in the hexagonal phase. It was also proven to have antibacterial property against E. coli.
    Matched MeSH terms: Aloe
  8. Leeyaphan C, Varothai S, Trakanwittayarak S, Suphatsathienkul P, Pattaravadee S, Matthapan L, et al.
    J Cosmet Dermatol, 2022 Feb;21(2):679-688.
    PMID: 33811776 DOI: 10.1111/jocd.14125
    BACKGROUND: Intertrigo is an inflammatory skin-fold condition. Candida infections may occur concurrently or afterward. Topical corticosteroids may reduce inflammation but exacerbate Candida infections. The treatment is contentious.

    OBJECTIVE: To evaluate the efficacies and safety of adsorbent lotion containing tapioca starch, spent grain wax, Butyrospermum parkii extract, argania spinosa kernel oil, aloe barbadensis, rosehip oil, and allantoin for the treatment of mild-to-moderate intertrigo, relative to 1% hydrocortisone cream.

    METHODS: This randomized, double-blinded study enrolled 40 intertrigo patients. Twice daily, 20 patients applied adsorbent lotion while the remainder used 1% hydrocortisone cream. Efficacy evaluation, skin biophysical measurements, skin tolerability, safety, and visual analog scale (VAS) patient-satisfaction scores were evaluated at baseline and Week 2.

    RESULTS: The adsorbent lotion showed higher complete cure rates for color, partial epidermal loss, papules/pustules/vesicles/patches, dryness, and scaling than the corticosteroid without statistical significance. Adsorbent lotion demonstrated significantly higher reduction in pruritus than the corticosteroid treatment. Reduction of erythema level using Mexameter and VAS patient-satisfaction scores were not statistically different between adsorbent lotion and hydrocortisone cream. No adverse effects or superimposed infections were reported.

    CONCLUSIONS: The anti-inflammatory efficacies of adsorbent lotion and low-potency steroid were equivalent. The lotion was safe and produced excellent pruritus reduction. Patient satisfaction was high.

    Matched MeSH terms: Aloe
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links