Displaying publications 21 - 40 of 160 in total

Abstract:
Sort:
  1. Bah AR, Rahman ZA
    ScientificWorldJournal, 2001 Nov 22;1 Suppl 2:90-5.
    PMID: 12805783
    Use of cheap, N-rich, and environmentally benign legume green manures to correct N deficiency in infertile soils is a very attractive option in the humid tropics. Understanding the influence of management and climate on their effectiveness, and quantifying their contribution to crop productivity, is therefore crucial for technology adoption and adaptation. Mineral N buildup and the contribution to N uptake in maize were studied in an Ultisol amended with fresh Gliricidia leaves. Net mineral N accumulation was compared in mulched and incorporated treatments in a field incubation study. The 15 N isotope dilution technique was used to quantify N supplied to maize by Gliricidia leaves in an alley cropping. Mineral N accumulation was slow, but was much greater after incorporation than after mulching. Also, N buildup was always higher in the topsoil (0 to 10 cm) than in the subsoil (10 to 20 cm). More NO3-N was leached than NH4-N, and the effect was greater in the incorporated treatment. Surface-applied Gliricidia leaves significantly increased N uptake by maize, and supplied >30% of the total N in the stover and >20% of that in the corn grain, even in the presence of hedgerows. Thus Gliricidia leaf mulch has immense potential to improve productivity in tropical soils.
    Matched MeSH terms: Ammonia/analysis
  2. Hata EM, Yusof MT, Zulperi D
    Plant Pathol J, 2021 Apr;37(2):173-181.
    PMID: 33866759 DOI: 10.5423/PPJ.OA.05.2020.0083
    The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 μmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.
    Matched MeSH terms: Phenylalanine Ammonia-Lyase
  3. Keng TS, Samsudin MFR, Sufian S
    Sci Total Environ, 2021 Mar 10;759:143489.
    PMID: 33248782 DOI: 10.1016/j.scitotenv.2020.143489
    Assessment of the treatment performance in the field-scale hybrid constructed wetland (CW) for ammonia manufacturing plant remains limited. After being in operations running on and off since 2014, the hybrid CW which treats effluent from the ammonia manufacturing plant in Peninsular, Malaysia has recently demonstrated the full clogging to the CW. It takes only 8 months to demonstrate a big deterioration of performance in 2019. Though the mechanism of clogging is not clear, which can be partially from inherent design problems or operational issues, nonetheless, it is important to evaluate how this clogging has impacted the effluent treatment performance and the continuous utilization of the CW. The purpose of this study is to evaluate the impact of the treatment performance on the ammoniacal nitrogen and COD removal when the CW is clogged. The result revealed that there is no impact on COD removal, but it has a substantial impact on the ammoniacal nitrogen removal. The ammoniacal nitrogen removal dropped to negative (outlet concentration is higher than inlet concentration) during the clogged period. Another observation is, the low removal rate also coincides with a high COD/N ratio, when the COD/N ratio increased to >2, the ammoniacal nitrogen removal rate dropped substantially, with the coefficient of determination, R2 of 40.5%. The root cause for the clogging to develop in a short period of time is unidentified. However, it is still worth noting that COD and ammoniacal nitrogen efficiency did not behave the same at the clogged CW.
    Matched MeSH terms: Ammonia
  4. Koyama M, Nagao N, Syukri F, Yusoff FM, Toda T, Quyen TNM, et al.
    Sci Total Environ, 2019 Jun 20;670:1133-1139.
    PMID: 31018429 DOI: 10.1016/j.scitotenv.2019.03.320
    The primary biological treatment method for organic sludge is composting and/or anaerobic digestion, but their product (compost or biogas) is of little economic benefit; therefore, an improved process to produce a high-value product is required to make sludge management more sustainable. Maximizing NH3 gas recovery during composting processes has the potential benefit of producing high-value microalgal biomass. However, the majority of produced ammonia does not evaporate as NH3 gas but retains as NH4+-N in the compost after fermentation. The present study investigates the effects of the timing of Ca(OH)2 dosing (on days 2, 5, and 9), and the Ca(OH)2 dose (1.1-2.6 mmol/batch), on lab-scale thermophilic composting of anaerobic sludge. The effects on NH3 recovery, organic matter degradability, and microbial activity are evaluated. Ca(OH)2 dosing immediately improved the emission of NH3, with yields 50-69% higher than those under control conditions. The timing of the dosing did not influence NH3 recovery or organic matter degradability. Higher Ca(OH)2 doses resulted in higher NH3 recovery, while microbial activity was temporarily and marginally inhibited. The pH of the compost reached 10-11.5 but quickly dropped to 8-8.5 within a day, probably because of neutralization of Ca(OH)2 by the emitted CO2 and release of NH3, which maintained the microbial activity. The present study indicated that Ca(OH)2 dosing would be useful to apply during thermophilic composting for NH3 recovery to cultivate high-value microalgal biomass, which enables this process to obtain a more economic benefit.
    Matched MeSH terms: Ammonia
  5. Cui J, Cui J, Peng Y, Yao D, Chan A, Chen Z, et al.
    Sci Total Environ, 2020 Jun 27;744:140558.
    PMID: 32711301 DOI: 10.1016/j.scitotenv.2020.140558
    Fluxes and composition dynamics of atmospheric nitrogen deposition play key roles in better balancing economic development and ecological environment. However, there are some knowledge gaps and difficulties in urban ecosystems, especially for small and medium-sized cities. In this study, both flux and composition (ratio of NH4+-N to NO3--N, RN) of wet-deposited dissolved inorganic nitrogen (DIN, sum of NO3--N and NH4+-N) were estimated and sources were identified at a long-term urban observation station in Tongling, a typical medium-sized city in eastern China during 2010-2016, respectively. Results showed that wet-deposited DIN fluxes were 33.20 and 28.15 kgN ha-1 yr-1 in Tongling city during 2010-2011 and 2015-2016, respectively. Compared to these two periods, both DIN and NO3--N fluxes decreased by 15.2% and 31.8% for a series of NOx abatement measures applied effectively, respectively. At the same time, the NH4+-N flux remained stable and ranged from 19.53 to 20.62 kgN ha-1 yr-1, and the RN increased from 1.7 to 2.2. Seasonally, winds from the southwest and west-southwest with higher frequencies and speeds in spring and summer brought more NH4+-N and DIN wet deposition from an ammonia plant, which could threaten the safety of regional hydrosphere ecosystems. On the whole, the wet-deposited NH4+-N was threatening regional ecosystems of both the hydrosphere and forest. The wet-deposited DIN including NH4+-N in Tongling city stemmed mainly from a combined source of coal combustion and dust from Cu extraction and smelting, ammonia production, and roads. Therefore, production lines should be updated for Cu extraction and smelting industries, thermal power generations and the ammonia plant, old vehicles should be eliminated, and the use of new energy vehicles should be promoted for regional sustainable development and human health in the medium-sized city.
    Matched MeSH terms: Ammonia
  6. Khan MF, Maulud KNA, Latif MT, Chung JX, Amil N, Alias A, et al.
    Sci Total Environ, 2018 Feb 01;613-614:1401-1416.
    PMID: 29898507 DOI: 10.1016/j.scitotenv.2017.08.025
    Air pollution can be detected through rainwater composition. In this study, long-term measurements (2000-2014) of wet deposition were made to evaluate the physicochemical interaction and the potential sources of pollution due to changes of land use. The rainwater samples were obtained from an urban site in Kuala Lumpur and a highland-rural site in the middle of Peninsular Malaysia. The compositions of rainwater were obtained from the Malaysian Meteorological Department. The results showed that the urban site experienced more acidity in rainwater (avg=277mm, range of 13.8 to 841mm; pH=4.37) than the rural background site (avg=245mm, range of 2.90 to 598mm; pH=4.97) due to higher anthropogenic input of acid precursors. The enrichment factor (EF) analysis showed that at both sites, SO42-, Ca2+ and K+ were less sensitive to seawater but were greatly influenced by soil dust. NH4+ and Ca2+ can neutralise a larger fraction of the available acid ions in the rainwater at the urban and rural background sites. However, acidifying potential was dominant at urban site compared to rural site. Source-receptor relationship via positive matrix factorisation (PMF 5.0) revealed four similar major sources at both sites with a large variation of the contribution proportions. For urban, the major sources influence on the rainwater chemistry were in the order of secondary nitrates and sulfates>ammonium-rich/agricultural farming>soil components>marine sea salt and biomass burning, while at the background site the order was secondary nitrates and sulfates>marine sea salt and biomass burning=soil components>ammonia-rich/agricultural farming. The long-term trend showed that anthropogenic activities and land use changes have greatly altered the rainwater compositions in the urban environment while the seasonality strongly affected the contribution of sources in the background environment.
    Matched MeSH terms: Ammonia
  7. Nallapan Maniyam M, Sjahrir F, Ibrahim AL, Cass AE
    J Gen Appl Microbiol, 2013;59(6):393-404.
    PMID: 24492598
    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.
    Matched MeSH terms: Ammonia/metabolism
  8. Ip YK, Leong MW, Sim MY, Goh GS, Wong WP, Chew SF
    J Exp Biol, 2005 May;208(Pt 10):1993-2004.
    PMID: 15879078
    The objective of this study was to elucidate if chronic and acute ammonia intoxication in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti, were associated with high levels of ammonia and/or glutamine in their brains, and if acute ammonia intoxication could be prevented by the administration of methionine sulfoximine [MSO; an inhibitor of glutamine synthetase (GS)] or MK801 [an antagonist of N-methyl D-aspartate type glutamate (NMDA) receptors]. For P. schlosseri and B. boddaerti exposed to sublethal concentrations (100 and 8 mmol l(-1) NH4Cl, respectively, at pH 7.0) of environmental ammonia for 4 days, brain ammonia contents increased drastically during the first 24 h, and they reached 18 and 14.5 micromol g(-1), respectively, at hour 96. Simultaneously, there were increases in brain glutamine contents, but brain glutamate contents were unchanged. Because glutamine accumulated to exceptionally high levels in brains of P. schlosseri (29.8 micromol g(-1)) and B. boddaerti (12.1 micromol g(-1)) without causing death, it can be concluded that these two mudskippers could ameliorate those problems associated with glutamine synthesis and accumulation as observed in patients suffering from hyperammonemia. P. schlosseri and B. boddaerti could tolerate high doses of ammonium acetate (CH3COONH4) injected into their peritoneal cavities, with 24 h LC50 of 15.6 and 12.3 micromol g(-1) fish, respectively. After the injection with a sublethal dose of CH3COONH4 (8 micromol g(-1) fish), there were significant increases in ammonia (5.11 and 8.36 micromol g(-1), respectively) and glutamine (4.22 and 3.54 micromol g(-1), respectively) levels in their brains at hour 0.5, but these levels returned to normal at hour 24. By contrast, for P. schlosseri and B. boddaerti that succumbed within 15-50 min to a dose of CH3COONH4 (15 and 12 micromol g(-1) fish, respectively) close to the LC50 values, the ammonia contents in the brains reached much higher levels (12.8 and 14.9 micromol g(-1), respectively), while the glutamine level remained relatively low (3.93 and 2.67 micromol g(-1), respectively). Thus, glutamine synthesis and accumulation in the brain was not the major cause of death in these two mudskippers confronted with acute ammonia toxicity. Indeed, MSO, at a dosage (100 microg g(-1) fish) protective for rats, did not protect B. boddaerti against acute ammonia toxicity, although it was an inhibitor of GS activities from the brains of both mudskippers. In the case of P. schlosseri, MSO only prolonged the time to death but did not reduce the mortality rate (100%). In addition, MK801 (2 microg g(-1) fish) had no protective effect on P. schlosseri and B. boddaerti injected with a lethal dose of CH3COONH4, indicating that activation of NMDA receptors was not the major cause of death during acute ammonia intoxication. Thus, it can be concluded that there are major differences in mechanisms of chronic and acute ammonia toxicity between brains of these two mudskippers and mammalian brains.
    Matched MeSH terms: Ammonia/metabolism*; Glutamate-Ammonia Ligase/antagonists & inhibitors
  9. Ip YK, Lim CK, Lee SL, Wong WP, Chew SF
    J Exp Biol, 2004 Aug;207(Pt 17):3015-23.
    PMID: 15277556
    The objective of this study was to determine the effects of feeding on the excretory nitrogen (N) metabolism of the giant mudskipper, Periophthalmodon schlosseri, with special emphasis on the role of urea synthesis in ammonia detoxification. The ammonia and urea excretion rates of P. schlosseri increased 1.70- and 1.92-fold, respectively, within the first 3 h after feeding on guppies. Simultaneously, there were significant decreases in ammonia levels in the plasma and the brain, and in urea contents in the muscle and liver, of P. schlosseri at 3 h post-feeding. Thus, it can be concluded that P. schlosseri was capable of unloading ammonia originally present in some of its tissues in anticipation of ammonia released from the catabolism of excess amino acids after feeding. Subsequently, there were significant increases in urea content in the muscle, liver and plasma (1.39-, 2.17- and 1.62-fold, respectively) at 6 h post-feeding, and the rate of urea synthesis apparently increased 5.8-fold between 3 h and 6 h. Increased urea synthesis might have occurred in the liver of P. schlosseri because the greatest increase in urea content was observed therein. The excess urea accumulated in the body at 6 h was completely excreted between 6 and 12 h, and the percentage of waste-N excreted as urea-N increased significantly to 26% during this period, but never exceeded 50%, the criterion for ureotely, meaning that P. schlosseri remained ammonotelic after feeding. By 24 h, 62.7% of the N ingested by P. schlosseri was excreted, out of which 22.6% was excreted as urea-N. This is the first report on the involvement of increased urea synthesis and excretion in defense against ammonia toxicity in the giant mudskipper, and our results suggest that an ample supply of energy resources, e.g. after feeding, is a prerequisite for the induction of urea synthesis. Together, increases in nitrogenous excretion and urea synthesis after feeding effectively prevented a postprandial surge of ammonia in the plasma of P. schlosseri as reported previously for other fish species. Consequently, contrary to previous reports, there were significant decreases in the ammonia content of the brain of P. schlosseri throughout the 24 h period post-feeding, accompanied by a significant decrease in brain glutamine content between 12 h and 24 h.
    Matched MeSH terms: Ammonia/blood; Ammonia/metabolism*
  10. Ip YK, Randall DJ, Kok TK, Barzaghi C, Wright PA, Ballantyne JS, et al.
    J Exp Biol, 2004 Feb;207(Pt 5):787-801.
    PMID: 14747411
    Periophthalmodon schlosseri is an amphibious and obligatory air-breathing teleost, which is extremely tolerant to environmental ammonia. It actively excretes NH(4)(+) in ammonia loading conditions. For such a mechanism to operate efficaciously the fish must be able to prevent back flux of NH(3). P. schlosseri could lower the pH of 50 volumes (w/v) of 50% seawater in an artificial burrow from pH 8.2 to pH 7.4 in 1 day, and established an ambient ammonia concentration of 10 mmol l(-1) in 8 days. It could alter the rate of titratable acid efflux in response to ambient pH. The rate of net acid efflux (H(+) excretion) in P. schlosseri was pH-dependent, increasing in the order pH 6.0<7.0<8.0<8.5. Net acid flux in neutral or alkaline pH conditions was partially inhibited by bafilomycin, indicating the possible involvement of a V-type H(+)-ATPase. P. schlosseri could also increase the rate of H(+) excretion in response to the presence of ammonia in a neutral (pH 7.0) external medium. Increased H(+) excretion in P. schlosseri occurred in the head region where active excretion of NH(4)(+) took place. This would result in high concentrations of H(+) in the boundary water layer and prevent the dissociation of NH(4)(+), thus preventing a back flux of NH(3) through the branchial epithelia. P. schlosseri probably developed such an 'environmental ammonia detoxification' capability because of its unique behavior of burrow building in the mudflats and living therein in a limited volume of water. In addition, the skin of P. schlosseri had low permeability to NH(3). Using an Ussing-type apparatus with 10 mmol l(-1) NH(4)Cl and a 1 unit pH gradient (pH 8.0 to 7.0), the skin supported only a very small flux of NH(3) (0.0095 micromol cm(-2) min(-1)). Cholesterol content (4.5 micromol g(-1)) in the skin was high, which suggests low membrane fluidity. Phosphatidylcholine, which has a stabilizing effect on membranes, constituted almost 50% of the skin phospholipids, with phosphatidyleserine and phsophatidylethanolamine contributing only 13% and 15%, respectively. More importantly, P. schlosseri increased the cholesterol level (to 5.5 micromol g(-1)) and altered the fatty acid composition (increased total saturated fatty acid content) in its skin lipid after exposure to ammonia (30 mmol l(-1) at pH 7.0) for 6 days. These changes might lead to an even lower permeability to NH(3) in the skin, and reduced back diffusion of the actively excreted NH(4)(+) as NH(3) or the net influx of exogenous NH(3), under such conditions.
    Matched MeSH terms: Ammonia/metabolism*
  11. Hamilton RG, Adkinson NF
    J Allergy Clin Immunol, 1996 Nov;98(5 Pt 1):872-83.
    PMID: 8939150
    BACKGROUND: Nonammoniated latex, ammoniated latex, and rubber glove extracts are the only sources of natural rubber (Hevea brasiliensis) latex that have potential for use as skin testing reagents in the diagnosis of latex allergy. Their diagnostic sensitivity and specificity as skin test reagents are unknown.

    OBJECTIVE: We conducted a phase 1/2 clinical study to examine the safety and diagnostic accuracy (sensitivity and specificity) of nonammoniated latex, ammoniated latex, and rubber glove extracts as skin test extracts to identify the most efficacious source material for future skin test reagent development.

    METHODS: Twenty-four adults not allergic to latex, 19 adults with hand dermatitis or pruritus, and 59 adults with a latex allergy were identified by clinical history. All provided blood and then received puncture skin tests and intradermal skin tests with nonammoniated latex, ammoniated latex, and rubber glove extracts from Malaysian H. brasiliensis latex by use of sequential titration. A glove provocation test and IgE anti-latex RAST were used to clarify positive history-negative skin test response and negative history-positive skin test response mismatches.

    RESULTS: All three extracts were biologically safe and sterile. After normalization to 1 mg/ml of total protein, all three extracts produced equivalent diagnostic sensitivity and specificity in puncture skin tests and intradermal skin tests at various extract concentrations. Optimal diagnostic accuracy was safely achieved at 100 micrograms/ml for intradermal skin tests (e.g., nonammoniated latex: puncture skin test sensitivity 96%, specificity 100%; intradermal skin test sensitivity 93%, specificity 96%). The presence of IgE antibody in skin was highly correlated with IgE anti-latex in serum (nonammoniated latex: r = 0.98, p < 0.001; ammoniated latex: r = 0.94, p < 0.001; rubber glove extract: r = 0.96, p < 0.001). All five available subjects with a positive history, negative skin test response, and absence of IgE antibody in serum had a negative glove provocation test response, indicating no clinical evidence of latex allergy. No systemic or large local allergic reactions were observed with puncture skin tests or intradermal skin tests.

    CONCLUSIONS: Equivalent diagnostic sensitivity and specificity were observed with the nonammoniated latex, ammoniated latex, and rubber glove extract skin test reagents after normalization for total protein; nonammoniated latex may be considered the reagent of choice on the basis of practical quality control and reproducibility considerations.

    Matched MeSH terms: Ammonia
  12. Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF
    ISME J, 2018 06;12(7):1779-1793.
    PMID: 29515170 DOI: 10.1038/s41396-018-0083-3
    The description of comammox Nitrospira spp., performing complete ammonia-to-nitrate oxidation, and their co-occurrence with canonical β-proteobacterial ammonia oxidizing bacteria (β-AOB) in the environment, calls into question the metabolic potential of comammox Nitrospira and the evolutionary history of their ammonia oxidation pathway. We report four new comammox Nitrospira genomes, constituting two novel species, and the first comparative genomic analysis on comammox Nitrospira. Unlike canonical Nitrospira, comammox Nitrospira genomes lack genes for assimilatory nitrite reduction, suggesting that they have lost the potential to use external nitrite nitrogen sources. By contrast, compared to canonical Nitrospira, comammox Nitrospira harbor a higher diversity of urea transporters and copper homeostasis genes and lack cyanate hydratase genes. Additionally, the two comammox clades differ in their ammonium uptake systems. Contrary to β-AOB, comammox Nitrospira genomes have single copies of the two central ammonia oxidation pathway operons. Similar to ammonia oxidizing archaea and some oligotrophic AOB strains, they lack genes involved in nitric oxide reduction. Furthermore, comammox Nitrospira genomes encode genes that might allow efficient growth at low oxygen concentrations. Regarding the evolutionary history of comammox Nitrospira, our analyses indicate that several genes belonging to the ammonia oxidation pathway could have been laterally transferred from β-AOB to comammox Nitrospira. We postulate that the absence of comammox genes in other sublineage II Nitrospira genomes is the result of subsequent loss.
    Matched MeSH terms: Ammonia/metabolism*
  13. McGee RG, Webster AC, Lewis SR, Welsford M
    Cochrane Database Syst Rev, 2023 Jun 05;6(6):CD009688.
    PMID: 37272501 DOI: 10.1002/14651858.CD009688.pub3
    BACKGROUND: Jellyfish envenomation is common in many coastal regions and varies in severity depending upon the species. Stings cause a variety of symptoms and signs including pain, dermatological reactions, and, in some species, Irukandji syndrome (which may include abdominal/back/chest pain, tachycardia, hypertension, cardiac phenomena, and, rarely, death). Many treatments have been suggested for these symptoms, but their effectiveness is unclear. This is an update of a Cochrane Review last published in 2013.

    OBJECTIVES: To determine the benefits and harms associated with the use of any intervention, in both adults and children, for the treatment of jellyfish stings, as assessed by randomised and quasi-randomised trials.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and Web of Science up to 27 October 2022. We searched clinical trials registers and the grey literature, and conducted forward-citation searching of relevant articles.  SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-RCTs of any intervention given to treat stings from any species of jellyfish stings. Interventions were compared to another active intervention, placebo, or no treatment. If co-interventions were used, we included the study only if the co-intervention was used in each group.  DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.  MAIN RESULTS: We included nine studies (six RCTs and three quasi-RCTs) involving a total of 574 participants. We found one ongoing study. Participants were either stung accidentally, or were healthy volunteers exposed to stings in a laboratory setting. Type of jellyfish could not be confirmed in beach settings and was determined by investigators using participant and local information. We categorised interventions into comparison groups: hot versus cold applications; topical applications. A third comparison of parenteral administration included no relevant outcome data: a single study (39 participants) evaluated intravenous magnesium sulfate after stings from jellyfish that cause Irukandji syndrome (Carukia). No studies assessed a fourth comparison group of pressure immobilisation bandages.  We downgraded the certainty of the evidence due to very serious risk of bias, serious and very serious imprecision, and serious inconsistency in some results.  Application of heat versus application of cold Four studies involved accidental stings treated on the beach or in hospital. Jellyfish were described as bluebottles (Physalia; location: Australia), and box jellyfish that do not cause Irukandji syndrome (Hawaiian box jellyfish (Carybdea alata) and major box jellyfish (Chironex fleckeri, location: Australia)). Treatments were applied with hot packs or hot water (showers, baths, buckets, or hoses), or ice packs or cold packs.  The evidence for all outcomes was of very low certainty, thus we are unsure whether heat compared to cold leads to at least a clinically significant reduction in pain within six hours of stings from Physalia (risk ratio (RR) 2.25, 95% confidence interval (CI) 1.42 to 3.56; 2 studies, 142 participants) or Carybdea alata and Chironex fleckeri (RR 1.66, 95% CI 0.56 to 4.94; 2 studies, 71 participants). We are unsure whether there is a difference in adverse events due to treatment (RR 0.50, 95% CI 0.05 to 5.19; 2 studies, 142 participants); these were minor adverse events reported for Physalia stings. We are also unsure whether either treatment leads to a clinically significant reduction in pain in the first hour (Physalia: RR 2.66, 95% CI 1.71 to 4.15; 1 study, 88 participants; Carybdea alata and Chironex fleckeri: RR 1.16, 95% CI 0.71 to 1.89; 1 study, 42 participants) or cessation of pain at the end of treatment (Physalia: RR 1.63, 95% CI 0.81 to 3.27; 1 study, 54 participants; Carybdea alata and Chironex fleckeri: RR 3.54, 95% CI 0.82 to 15.31; 1 study, 29 participants). Evidence for retreatment with the same intervention was only available for Physalia, with similar uncertain findings (RR 0.19, 95% CI 0.01 to 3.90; 1 study, 96 participants), as was the case for retreatment with the alternative hot or cold application after Physalia (RR 1.00, 95% CI 0.55 to 1.82; 1 study, 54 participants) and Chironex fleckeri stings (RR 0.48, 95% CI 0.02 to 11.17; 1 study, 42 participants). Evidence for dermatological signs (itchiness or rash) was available only at 24 hours for Physalia stings (RR 1.02, 95% CI 0.63 to 1.65; 2 studies, 98 participants).  Topical applications One study (62 participants) included accidental stings from Hawaiian box jellyfish (Carybdea alata) treated on the beach with fresh water, seawater, Sting Aid (a commercial product), or Adolph's (papain) meat tenderiser. In another study, healthy volunteers (97 participants) were stung with an Indonesian sea nettle (Chrysaora chinensis from Malaysia) in a laboratory setting and treated with isopropyl alcohol, ammonia, heated water, acetic acid, or sodium bicarbonate. Two other eligible studies (Carybdea alata and Physalia stings) did not measure the outcomes of this review.  The evidence for all outcomes was of very low certainty, thus we could not be certain whether or not topical applications provided at least a clinically significant reduction in pain (1 study, 62 participants with Carybdea alata stings, reported only as cessation of pain). For adverse events due to treatment, one study (Chrysaora chinensis stings) withdrew ammonia as a treatment following a first-degree burn in one participant. No studies evaluated clinically significant reduction in pain, retreatment with the same or the alternative treatment, or dermatological signs.

    AUTHORS' CONCLUSIONS: Few studies contributed data to this review, and those that did contribute varied in types of treatment, settings, and range of jellyfish species. We are unsure of the effectiveness of any of the treatments evaluated in this review given the very low certainty of all the evidence. This updated review includes two new studies (with 139 additional participants). The findings are consistent with the previous review.

    Matched MeSH terms: Ammonia*
  14. Akbari E, Buntat Z, Ahmad MH, Enzevaee A, Yousof R, Iqbal SM, et al.
    Sensors (Basel), 2014;14(3):5502-15.
    PMID: 24658617 DOI: 10.3390/s140305502
    Carbon Nanotubes (CNTs) are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET)-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I-V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research.
    Matched MeSH terms: Ammonia/analysis
  15. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
    Matched MeSH terms: Ammonia
  16. Mohd Hanafiah Z, Wan Mohtar WHM, Abu Hasan H, Jensen HS, Klaus A, Wan-Mohtar WAAQI
    Sci Rep, 2019 11 06;9(1):16109.
    PMID: 31695087 DOI: 10.1038/s41598-019-52493-y
    The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia-nitrogen (NH3-N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3-N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3-N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3-N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.
    Matched MeSH terms: Ammonia/analysis; Ammonia/metabolism
  17. Shaha DC, Hasan J, Kundu SR, Yusoff FM, Salam MA, Khan M, et al.
    Sci Rep, 2022 Dec 05;12(1):20980.
    PMID: 36470973 DOI: 10.1038/s41598-022-24500-2
    The tropical estuarine ecosystem is fascinating for studying the dynamics of water quality and phytoplankton diversity due to its frequently changing hydrological conditions. Most importantly, phytoplankton is the main supplier of ω3 polyunsaturated fatty acids (PUFA) in the coastal food web for fish as they could not synthesize PUFA. This study evaluated seasonal variations of water quality parameters in the Meghna River estuary (MRE), explored how phytoplankton diversity changes according to hydro-chemical parameters, and identified the major phytoplankton groups as the main source of PUFA for hilsa fish. Ten water quality indicators including temperature, dissolved oxygen, pH, salinity, dissolved inorganic nitrogen (DIN = nitrate, nitrite, ammonia) and phosphorus, dissolved silica and chlorophyll-a were evaluated. In addition, phytoplankton diversity was assessed in the water and hilsa fish gut. Principal component analysis (PCA) was used to analyze the spatio-temporal changes in the water quality conditions, and the driving factors in the MRE. Four main components were extracted and explained 75.4% variability of water quality parameters. The most relevant driving factors were dissolved oxygen, salinity, temperature, and DIN (nitrate, nitrite and ammonia). These variabilities in physicochemical parameters and dissolved inorganic nutrients caused seasonal variations in two major groups of phytoplankton. Peak abundance of Chlorophyta (green algae) occurred in water in nutrient-rich environments (nitrogen and phosphorus) during the wet (36%) season, while Bacillariophyta (diatoms) were dominant during the dry (32%) season that depleted dissolved silica. Thus, the decrease of green algae and the increase of diatoms in the dry season indicated the potential link to seasonal changes of hydro-chemical parameters. The green algae (53.7%) were the dominant phytoplankton group in the hilsa gut content followed by diatoms (22.6%) and both are contributing as the major source of PUFAs for hilsa fish according to the electivity index as they contain the highest amounts of PUFAs (60 and 28% respectively).
    Matched MeSH terms: Ammonia/analysis
  18. Hadi Hamli, Mohd Hanafi Idris, Amy Halimah Rajaee, Abu Hena Mustafa Kamal, Mohammad Nesarul Hoque
    Sains Malaysiana, 2017;46:545-551.
    Condition Index (CI) was used to estimate the reproductive biology cycle of the hard clam Meretrix lyrata based on dry
    body weight and shell weight. High CI value was observed due to the increase in the body weight of the hard clam that
    corresponding to the maturity stage and early spawning. The CI value of M. lyrata from Buntal Village, Kuching, Sarawak
    showed three highest peaks during the 12-month study on May and October 2013 and March 2014. The lowest CI values
    were obtained in September and November 2013 and April 2014. Ammonia nitrogen was the only water parameter that
    significantly correlated to the CI values. The CI application is important to estimate the maturity of hard clam gonad
    to facilitate conservation activity through the hard clam harvesting out of the gonad maturation and spawning period.
    Matched MeSH terms: Ammonia
  19. Soon TK, Julian Ransangan
    Sains Malaysiana, 2016;45:865-877.
    Marudu Bay, north coast of Sabah is characterized with mesotrophic water body and typical environmental parameters
    throughout the year. The current study was undertaken to evaluate the effect of environmental parameters and nutrients
    in mesotrophic water on the occurrence and distribution of potentially harmful phytoplankton species. The samplings
    were conducted over a period of thirteen months, covering southwest monsoon (SWM), inter-monsoon (IM), and northeast
    monsoon (NEM), at ten stations throughout the bay. Physical parameters (temperature, salinity, pH, dissolved oxygen,
    current speed and secchi depth), biological parameters (cell densities of phytoplankton) and chemical parameters
    (phosphate, nitrate, silicate and ammonia) were examined. The results indicated at least eight potentially harmful
    phytoplankton species (Dinophysis caudata, D. miles, Ceratium furca, C. fursus, Prorocentrum micans, P. sigmoides, P.
    triestinum and Pseudo-nitzschia sp.) were detected in north coast of Sabah. However, the potentially harmful phytoplankton
    species contributed only about 1.3% of the total phytoplankton community. Under nutrient deprivation conditions, the
    potentially harmful phytoplankton species distribution was mainly influenced by the ability to utilize other nitrogen
    sources, cell mobility and toleration to low nutrients environments.
    Matched MeSH terms: Ammonia
  20. Jutarut Iewkittayakorn, Juntima Chungsiriporn, Prukraya Pongyeela
    Sains Malaysiana, 2017;46:1763-1769.
    Ammonium-enriched skim latex serum - used for absorption of contaminating ammonia gas - when composted with other rubber tree wastes, is promising as a good compost. The objective of this research was to utilize ammonium-enriched skim latex serum (S) as a raw composting ingredient after being combined with para sawdust (W1) and para rubber leaves (W2). Several ratios of S, W1 and W2 were experimented in a 15L composting vessel to determine the most effective compost. The best ratio was found to be 3:1:3 by weight at 12-day retention. The modified 30 L composting reactor employed with the derived optimum mixing conditions yielded N, P and K of 2.40, 1.51 and 14.84 %w/w. The growth of Brassica alboglabra after application of this compost combined with a chemical fertilizer generated the highest fresh weight (4.48 g/plant). Thus, compost from these wastes could be used as a fertilizer and logically should contribute to cost saving of waste disposal.
    Matched MeSH terms: Ammonia
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links