Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Das S, Sakthiswary R
    Curr Drug Targets, 2013 Dec;14(14):1667-74.
    PMID: 24354585
    Preventing osteoporotic fractures in millions of individuals may significantly reduce the associated morbidity and health-care expenditures incurred. As such, the search for newer anti-osteoporotic agents has been ongoing for years. Genetic studies have proven that the secreted protein sclerostin is one of the main culprits, which negatively regulates the bone formation. Recently, sclerostin-neutralizing monoclonal antibodies (Scl-Ab) in rodent studies have shown positive effects on bone homeostasis. An extensive search of the literature was performed in the BIOSIS, Cinahl, EMBASE, Pub- Med, Web of Science and Cochrane Library databases to evaluate the published murine studies on the effects of Scl-Ab on the bone metabolism and histomorphometric parameters. Our systematic review depicts a significant association between Scl-Ab administration and improvement in bone formation, bone density, bone volume and trabecular thickness.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use*
  2. Choong YS, Lee YV, Soong JX, Law CT, Lim YY
    Adv Exp Med Biol, 2017;1053:221-243.
    PMID: 29549642 DOI: 10.1007/978-3-319-72077-7_11
    The use of monoclonal antibody as the next generation protein therapeutics with remarkable success has surged the development of antibody engineering to design molecules for optimizing affinity, better efficacy, greater safety and therapeutic function. Therefore, computational methods have become increasingly important to generate hypotheses, interpret and guide experimental works. In this chapter, we discussed the overall antibody design by computational approches.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use*
  3. Chong HY, Leow CY, Abdul Majeed AB, Leow CH
    Virus Res, 2019 12;274:197770.
    PMID: 31626874 DOI: 10.1016/j.virusres.2019.197770
    Flaviviruses are group of single stranded RNA viruses that cause severe endemic infection and epidemics on a global scale. It presents a significant health impact worldwide and the viruses have the potential to emerge and outbreak in a non-endemic geographical region. Effective vaccines for prophylaxis are only available for several flaviviruses such as Yellow Fever virus, Tick-borne Encephalitis Virus, Dengue Virus and Japanese Encephalitis Virus and there is no antiflaviviral agent being marketed. This review discusses the flavivirus genome, replication cycle, epidemiology, clinical presentation and pathogenesis upon infection. Effective humoral response is critical to confer protective immunity against flaviviruses. Hence, we have also highlighted the immune responses elicited upon infection, various diagnostic facilities available for flaviviral disease and monoclonal antibodies available to date against flavivirus infection.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  4. Chin CF, Lai JY, Choong YS, Anthony AA, Ismail A, Lim TS
    Sci Rep, 2017 05 19;7(1):2176.
    PMID: 28526816 DOI: 10.1038/s41598-017-01987-8
    Hemolysin E (HlyE) is an immunogenic novel pore-forming toxin involved in the pathogenesis of typhoid fever. Thus, mapping of B-cell epitopes of Salmonella enterica serovar Typhi (S. Typhi) is critical to identify key immunogenic regions of HlyE. A random 20-mer peptide library was used for biopanning with enriched anti-HlyE polyclonal antibodies from typhoid patient sera. Bioinformatic tools were used to refine, analyze and map the enriched peptide sequences against the protein to identify the epitopes. The analysis identified both linear and conformational epitopes on the HlyE protein. The predicted linear GAAAGIVAG and conformational epitope PYSQESVLSADSQNQK were further validated against the pooled sera. The identified epitopes were then used to isolate epitope specific monoclonal antibodies by antibody phage display. Monoclonal scFv antibodies were enriched for both linear and conformational epitopes. Molecular docking was performed to elucidate the antigen-antibody interaction of the monoclonal antibodies against the epitopes on the HlyE monomer and oligomer structure. An in-depth view of the mechanistic and positional characteristics of the antibodies and epitope for HlyE was successfully accomplished by a combination of phage display and bioinformatic analysis. The predicted function and structure of the antibodies highlights the possibility of utilizing the antibodies as neutralizing agents for typhoid fever.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  5. Chan SK, Lim TS
    Adv Exp Med Biol, 2017;1053:61-78.
    PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4
    The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  6. Chan SK, Rahumatullah A, Lai JY, Lim TS
    Adv Exp Med Biol, 2017;1053:35-59.
    PMID: 29549634 DOI: 10.1007/978-3-319-72077-7_3
    Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  7. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.
    Antiviral Res, 2013 Oct;100(1):8-13.
    PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012
    Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  8. Bhattacharya-Chatterjee M, Chatterjee SK, Foon KA
    Curr. Opin. Mol. Ther., 2001 Feb;3(1):63-9.
    PMID: 11249733
    Certain anti-idiotypic antibodies that bind to the antigen-combining sites of antibodies can effectively mimic the three-dimensional structures and functions of the external antigens and can be used as surrogate antigens for active specific immunotherapy. Extensive studies in animal models have demonstrated the efficacy of these vaccines for triggering the immune system to induce specific and protective immunity against bacterial, viral and parasitic infections as well as tumors. Several monoclonal anti-idiotype antibodies that mimic distinct human tumor-associated antigens have been developed and characterized. Encouraging results have been obtained in recent clinical trials using these anti-idiotype antibodies as vaccines. In this article, we will review the current literature and discuss the potential of this novel therapeutic approach for various human cancers.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  9. Bhattacharya-Chatterjee M, Chatterjee SK, Foon KA
    Immunol Lett, 2000 Sep 15;74(1):51-8.
    PMID: 10996628
    Immunization with anti-idiotype (Id) antibodies represents a novel new approach to active immunotherapy. Extensive studies in animal tumor models have demonstrated the efficacy of anti-Id vaccines in preventing tumor growth and curing mice with established tumor. We have developed and characterized several murine monoclonal anti-Id antibodies (Ab2) which mimic distinct human tumor-associated antigens (TAA) and can be used as surrogate antigens for triggering active anti-tumor immunity in cancer patients. Encouraging results have been obtained in recent clinical trials. In this article, we will review the existing literature and summarize our own findings showing the potential of this approach for various human cancers. We will also discuss where anti-Id vaccines may perform better than traditional antigen vaccines.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  10. Bhattachary-Chatterjee M, Nath Baral R, Chatterjee SK, Das R, Zeytin H, Chakraborty M, et al.
    Cancer Immunol Immunother, 2000 Jun;49(3):133-41.
    PMID: 10881692
    Anti-idiotype (Id) vaccine therapy has been tested and shown to be effective, in several animal models, for triggering the immune system to induce specific and protective immunity against bacterial, viral and parasitic infections. The administration of anti-Id antibodies as surrogate tumor-associated antigens (TAA) also represents another potential application of the concept of the Id network. Limited experience in human trials using anti-Id to stimulate immunity against tumors has shown promising results. In this "counter-point" article, we discuss our own findings showing the potential of anti-Id antibody vaccines to be novel therapeutic approaches to various human cancers and also discuss where anti-Id vaccines may perform better than traditional multiple-epitope antigen vaccines.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
  11. Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN
    Biochim Biophys Acta Gene Regul Mech, 2022 10;1865(7):194873.
    PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873
    Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
    Matched MeSH terms: Antibodies, Monoclonal/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links