The main purpose of this research is to understand the experiences and psychological wellbeing of nurses working in palliative ward. There were two research questions driving this research throughout the process of data collection and data analysis. Four nurses from the palliative ward participated in this research to provide details on their psychological wellbeing. Semi-structured interview questions together with observation and simple survey questions were used to gather the data. Thematic analysis was used to identify the meaningful themes for each research question. Six main themes were identified: autonomy, environmental mastery, positive relation, personal growth, self-acceptance and purpose in life. The findings are highly relevant with the theory and literature. The findings indicate that the participants have good psychological wellbeing due to their huge experiences in palliative ward.
The number of small and medium-sized accommodations (SMSAs) has increased in Malaysia in tandem with the growth of the tourism industry worldwide. The states involved in this study were Terengganu, Kelantan and Pahang. The SMSAs in these states are rated using Orchid rating, namely 1-Orchid, 2-Orchid and 3-Orchid, generated by the Ministry of Tourism, Arts and Culture Malaysia (MOTAC). This study applied the Resource-based View (RBV) theory to investigate four factors (marketing management, human resourcesmanagement, innovation capability management and information technology) assumed to be competitive capabilities that may influence accommodation’s performance. The objective of the study is to examine whether the four factors influence the performance of Orchid-rated accommodations located in the East Coast of West Malaysia. The results revealed that the four factors do not have any relationship with the accommodation’s performance. The analysis also singled out one argument of the director of SMSA that competitive capabilities are not important to their business. This argument coincides with the results of the analysis that the four factors are not significant with regards to the accommodations’ performance.
The distinctive regenerative ability of local marine worm (polychaete),Diopatra claparediiGrube, 1878, has the potential as a cellular growth agent. In this study, the growth effect was investigatedin normal cellsand cancer cells. Different concentrations (0-100
The fabrication of TiO2 nanotubes (TNT) was carried out by electrochemical anodization of Ti in aqueous electrolyte containing NH4F. The effect of electrolyte pH, applied voltage, fluoride concentration and anodization duration on the formation of TNT was investigated. It was observed that self-organized TNT can be formed by adjusting the electrolyte to pH 2-4 whereby applied voltage of 10-20 V can be performed to produce highly ordered, well-organized TNT. At 20 V, TNT can be fabricated in the concentration range of 0.07 M to 0.20 M NH4F. Higher fluoride concentration leads to etching of Ti surface and reveals the Ti grain boundaries. The prepared TNT films also show an increase in depth and in size with time and the growth of TNT films reach a steady state after 120 minutes. The morphology and geometrical aspect of the TNT would be an important factor influencing the photoelectrochemical response, with higher photocurrent response is generally associated with thicker layer of TNT. Consequently, one can tailor the resulting TNT to desired surface morphologies by simply manipulating the electrochemical parameters for wide applications such as solar energy conversion and photoelectrocatalysis.
Bacterial endophytes are found on all types of plants and is a potential source of bioactive compounds which can be utilized to fight against multi-resistant pathogens and could be further develop into new leads for antibiotic development. However, the research done on the bacterial endophytes is relatively new and has potential to grow as it is theorized that each plant has one or more bacterial endophytes inhabiting them. This review aims to review the studies that have been done previously and give new insights on the latest trends in this field of research.
Scanty information exists pertaining to the length-weight relationship (LWR) and length-length relationship (LLR) parameters of longsnouted catfish, Plicofollis argyropleuron in lotic systems throughout the northern part of Peninsular Malaysia. It is vital to reveal these biological properties of P. argyropleuron in Kuala Muda and Merbok estuary for future management and to increase knowledge about this fish stocks. The fish samples were randomly collected in the estuary area of Kuala Muda and Merbok, Kedah for 10 months from March 2009 to December 2009. The values of the exponent b in the LWR equations (W = aL(b) ) were approximately 3, indicating an isometric growth with high correlation coefficient (r(2)). The value of LLR (r(2)>0.9) indicated that they are highly significant and highly correlated. These parameters are essential for evaluating the relative condition of fish and species managements as well as their fisheries and stock assessment.
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
Remote sensing and geographic information system techniques are significant and popular approaches that have been used in recent years to measure and map urban growth patterns. This paper primarily aims to provide a basis for a literature review of urban growth measurement and mapping by using different methods. For this purpose, the general characteristics of measuring and mapping urban growth patterns are described and classified. The strengths and weaknesses of the various methods have been identified from an analysis and discussion of the characteristics of the techniques. Results of reviews confirm that combining quantitative and qualitative techniques, such as Shannon approach and change detection, to measure and map urban growth patterns will improve understanding of the phenomenon of urban growth. Moreover, using social and economic data such as population and income data will improve understanding of the relationships between causes and effects. The integration of social and economic factors with quantitative and qualitative techniques will contribute to a perfect evaluation of urban growth patterns and land use changes, taking technical, social, economic, spatial, and temporal factors into account.
Quinolines compounds are toxic pollutants. Their biodegradation by microbes represents a tool
for bioremediation. The growth of Klebsiella penumoniae on 2-methylquinoline shows typical
sigmoidal bacterial growth curves. Since there exists a variety of models for describing the
growth profile of microorganism such as logistic, Gompertz, Richards, Schnute, Baranyi-
Roberts, Von Bertalanffy, Buchanan three-phase and more recently Huang models, the growth
curves exhibit under such conditions would be an excellent study for finding the best model.
The Huang model was chosen as the best model based on statistical tests such as root-meansquare
error (RMSE), adjusted coefficient of determination (R2), bias factor (BF), accuracy
factor (AF) and corrected AICc (Akaike Information Criterion). Novel constants obtained from
the modelling exercise would be used for further secondary modelling.
The increase of anthropogenic activities and growth of technology in Antarctica is fuelled by the high demand for petroleum hydrocarbons needed for daily activities. Oil and fuel spills that occur during explorations have caused hydrocarbon pollution in this region, prompting concern for the environment by polar communities and the larger world community. Crude oil and petroleum hydrocarbon products contain a wide variety of lethal components with high toxicity and low biodegradability. Hydrocarbon persistence in the Antarctic environment only worsens the issues stemming from environmental pollution as they can be long-term. Numerous efforts to lower the contamination level caused by these pollutants have been conducted mainly in bioremediation, an economical and degrading-wise method. Bioremediation mainly functions on conversion of complex toxic compounds to simpler organic compounds due to the consumption of hydrocarbons by microorganisms as their energy source. This review presents a summary of the collective understanding on bioremediation of petroleum hydrocarbons by microorganisms indigenous to the Antarctic region from past decades to current knowledge.
Inclusive analysis on the optical characteristics of InGaAs/GaAs QW structure for 980 nm semiconductor laser operation is presented from experimental and theoretical point of view. The InGaAs/GaAs quantum well structure is grown by molecular beam epitaxy at different indium composition and quantum well thickness for optical characteristic comparison. Photoluminescence spectra from the measurement show that the spectrum is in good agreement with the simulation results. Detail simulation on the material gain for the InGaAs/GaAs quantum well as a function of carrier densities and operating temperature is also performed in order to optimize the semiconductor laser design for device fabrication.
The effects of Fe buffer layer on the microstructures and GMR property of magnetron sputtered Co/Cu multilayers were studied. The main focus was to systematically identify the types of microstructural features present in the multilayers and to determine their characteristic length scales via qualitative and quantitative microstructural characterisation techniques. Both diffraction and imaging techniques were used to extract useful information on layering and crystallographic structures of the materials. This has provided an insight into the structure-property relationship of the materials system. Co/Cu multilayered samples grown with iron buffer layers were found to display better structural coherency and layering quality as compared to those grown without the iron buffer layers. The high GMR effect as demonstrated by these multilayers was associated with highly correlated interface profiles, sharp columnar grain boundaries and high degree of lateral coherency in columnar grain growth.
In this research an atomic force microscopy (AFM) study on self-assembled In0.5Ga0.5As/GaAs quantum dots (QDs) was performed. Surface morphology of self-assembled In0.5Ga0.5As QDs changes with different growth time. Increasing growth time increased the dots size and decreased the dots density. In addiditon, self-assembled In0.5Ga0.5As QDs was grown on In0.1Ga0.9As underlying layer with different after-growth AsH3 flow time during cooling-down. The underlying layer caused lattice strain relaxation in the QDs on the surface. Increasing the period of AsH3 flow during cooling-down reduced the diameter of the dots and increased the density. The migration of groups III species in the growth of In0.5Ga0.5As/GaAs system was influenced by AsH3 flow during cooling-down period. This was due to the increase in surface population of active arsenic species. Underlying layer and the period of AsH3 flow during cooling-down are the two key factors in the fabrication of small and dense In0.5Ga0.5As QDs.
A factorial experiment of three light intensities and three fertiliser levels was carried out on the potted seedlings of neobalanocarpus heimii as stock plants for subsequent rooting of cuttings. Light intensities used were 25%, 50% and 100% of the open sunlight and the fertilizer levels were 0 g, 1 g and 2 g plant-1 month-1. Results of 11 months after potting showed that the stock plants treated with 1 g and 2 g fertilizer had significantly better height and diameter increments than those without fertilizer in all light intensities tried. On the other hand, no significant effect of light intensity was obtained in height and diameter increments of the stock plants. Survival of stock plants of more than 86% was obtained in all light intensities tried with or without fertilizer application. Test on rooting of subsequent cuttings showed that light intensity of 25% and 0 g fertiliser, to stock plants gave the highest rooting percentage (73%) and the number of roots (2.0). The general trend showed that rooting decreased to below 60% when intensity of light was increased. In terms of size, cuttings with diameter between 1.2 mm and 2.3 mm is recommended as it yielded rooting of 65% to 75%. For practical application, a combination of 25% light intensity and 1 g of fertilizer plant-1 month-1 can be applied to the stock plants to maintain their healthy growth for continuous production of cutting materials for rooting.
A number of n-type Si (100) samples were prepared into porous structures via electrochemical etching process, using an electrolyte solution; HF and ethanol. The morphological properties of the samples were observed under scanning electron microscope measurement. The results showed that the pore density, pore uniformity distribution and pore size of the porous Si samples increased with time of etching. In the next stage, H2O2 was introduced into the electrolyte solution in order to investigate its effect on the morphological properties of the porous Si. From the experiment, we found that H2O2 gave finer porous structure with highly symmetrical cubic shape on the surface. Besides, H2O2 promoted smoother surface of the pore walls. Hence, the results showed that such porous Si structure could be used as a better substrate for the subsequent layer, in particular for the growth of cubic material.
This review is aimed to present an in-depth review of several methodologies on magnetic
water treatment (MWT) that are employed as scale treatment in water pipeline and to
critically discuss each method in order to determine the best outcome of MWT. The
magnetically assisted water in pipeline in various applications are presented, argued and
best variables are listed according to the performance of each MWT. The advantages and
limitations of MWT are discussed and the main outcome from the review summarize the
best method in MWT, especially in effectiveness of treating scale in terms of sustained
environment benefits. Magnetic field application in water treatment has the potential to
improve the water pipeline performance and lifetime. The application is also significant in
controlling the growth of scale in upcoming system. Both of these benefits lead to healthier
water treatment, increasing and maintaining the lifetime and performance of water system.
Considering the characteristics of the vibration data detected by the unstable regulation process in the grinding and grading control system and the shortcomings of the traditional wavelet anomaly detection method, an online anomaly detection method combining autoregressive and wavelet analysis is proposed. By introducing the improved robust AR model, this method can overcome the problem that the time and frequency of traditional anomaly detection using wavelet analysis method cannot be well balanced and ensure the rationality of normal detection of process data. Considering the characteristics of parameter change and dynamic characteristics in the process of grinding and grading, the proposed method has the ability of on-line detection and parameter updating in real time, which ensures the control parameters of time-varying process control system. In order to avoid the problem that the traditional anomaly detection method needs to set the detection threshold, introduce the HMM to analyse the wavelet coefficients and update the HMM parameters online, which can ensure that the HMM can well reflect the distribution of the abnormal value of the process data. Through the experiment and application, it is proven that the anomaly data detection method proposed in this paper is more suitable for the detection data in the process of unstable regulation.
The growth of residential and commercial areas threatens vegetation and ecosystems. Thus, an urgent urban management
issue involves determining the state and the quantity of urban tree species to protect the environment, as well as controlling
their growth and decline. This study focused on the detection of urban tree species by considering three types of tree
species, namely, Mesua ferrea L., Samanea saman, and Casuarina sumatrana. New rule sets were developed to detect these
three species. In this regard, two pixel-based classification methods were applied and compared; namely, the method of
maximum likelihood classification and support vector machines. These methods were then compared with object-based
image analysis (OBIA) classification. OBIA was used to develop rule sets by extracting spatial, spectral, textural and color
attributes, among others. Finally, the new rule sets were implemented into WorldView-2 imagery. The results indicated
that the OBIA based on the rule sets displayed a significant potential to detect different tree species with high accuracy.
This paper presents a review on the state of the art in offline text-independent writer identification methods for three major languages, namely English, Chinese and Arabic, which were published in literatures from 2011 till 2016. For ease of discussions, we grouped the techniques into three categories: texture-, structure-, and allograph-based. Results are analysed, compared and tabulated along with datasets used for fair and just comparisons. It is observed that during that period, there are significant progresses achieved on English and Arabic; however, the growth on Chinese is rather slow and far from satisfactory in comparison to its wide usage. This is due to its complex writing structure. Meanwhile, issues on datasets used by previous studies are also highlighted because the size matter - accuracy of the writer identification deteriorates as database size increases.
Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (∆Smax) is limited by distinct correlation volumes (V cr ) and transition diffuseness. The linearity between V cr and the transition diffuseness is emphasized, while ∆Smax = 300 kJ/(K.m3) is obtained for Pb0.8Ba0.2ZrO3. The ∆Smax in antiferroelectric Pb0.95Zr0.05TiO3, Pb0.8Ba0.2ZrO3 and polymeric ferroelectrics scales proportionally with V cr-2.2, owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas ∆Smax in relaxor and normal ferroelectrics scales as ∆Smax ~ V cr-0.37, which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls.