Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Abdullah B, Shibghatullah AH, Hamid SS, Omar NS, Samsuddin AR
    Cell Tissue Bank, 2009 Aug;10(3):205-13.
    PMID: 18975136 DOI: 10.1007/s10561-008-9111-2
    This study was performed to determine the microscopic biological response of human nasal septum chondrocytes and human knee articular chondrocytes placed on a demineralized bovine bone scaffold. Both chondrocytes were cultured and seeded onto the bovine bone scaffold with seeding density of 1 x 105 cells per 100 microl/scaffold and incubated for 1, 2, 5 and 7 days. Proliferation and viability of the cells were measured by mitochondrial dehydrogenase activity (MTT assay), adhesion study was analyzed by scanning electron microscopy and differentiation study was analyzed by immunofluorescence staining and confocal laser scanning electron microscopy. The results showed good proliferation and viability of both chondrocytes on the scaffolds from day 1 to day 7. Both chondrocytes increased in number with time and readily grew on the surface and into the open pores of the scaffold. Immunofluorescence staining demonstrated collagen type II on the scaffolds for both chondrocytes. The results showed good cells proliferation, attachment and maturity of the chondrocytes on the demineralized bovine bone scaffold. The bovine bone being easily resourced, relatively inexpensive and non toxic has good potential for use as a three dimensional construct in cartilage tissue engineering.
    Matched MeSH terms: Cell Differentiation/physiology
  2. Ng AM, Westerman K, Kojima K, Kodoma S, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:7-8.
    PMID: 19024958
    Nerve stem cells have a unique characteristic in that they form spherical aggregates, also termed neurospheres, in vitro. The study demonstrated the successful derivation of these neurospheres from bone marrow culture. Their plasticity as nerve stem cells was confirmed. The findings further strengthens the pluripotency of cell populations within the bone marrow.
    Matched MeSH terms: Cell Differentiation/physiology
  3. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Cell Differentiation/physiology
  4. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:45-6.
    PMID: 15468811
    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone were cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher measurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo.
    Matched MeSH terms: Cell Differentiation/physiology*
  5. Goh JC, Shao XX, Hutmacher D, Lee EH
    Med J Malaysia, 2004 May;59 Suppl B:17-8.
    PMID: 15468797
    Matched MeSH terms: Cell Differentiation/physiology
  6. Hayati AR, Nur Fariha MM, Tan GC, Tan AE, Chua K
    Arch Med Res, 2011 May;42(4):291-300.
    PMID: 21820607 DOI: 10.1016/j.arcmed.2011.06.005
    Placenta as a fetomaternal organ is a potential source of fetal as well as maternal stem cells. This present study describes novel properties of the cells isolated from the maternal part of term placenta membrane, the decidua basalis.
    Matched MeSH terms: Cell Differentiation/physiology
  7. Wong CED, Hua K, Monis S, Saxena V, Norazit A, Noor SM, et al.
    J Neurochem, 2021 02;156(4):481-498.
    PMID: 32583440 DOI: 10.1111/jnc.15108
    Glial cell line-derived neurotrophic factor (GDNF) has been reported to enhance dopaminergic neuron survival and differentiation in vitro and in vivo, although those results are still being debated. Glial cell line-derived neurotrophic factor (gdnf) is highly conserved in zebrafish and plays a role in enteric nervous system function. However, little is known about gdnf function in the teleost brain. Here, we employed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to impede gdnf function in the maintenance of dopaminergic neuron development. Genotyping of gdnf crispants revealed successful deletions of the coding region with various mutant band sizes and down-regulation of gdnf transcripts at 1, 3 and 7 day(s) post fertilization. Notably, ~20% reduction in ventral diencephalic dopaminergic neuron numbers in clusters 8 and 13 was observed in the gdnf-deficient crispants. In addition, gdnf depletion caused a modest reduction in dopaminergic neurogenesis as determined by 5-ethynyl-2'-deoxyuridine pulse chase assay. These deleterious effects could be partly attributed to deregulation of dopaminergic neuron fate specification-related transcription factors (otp,lmx1b,shha,and ngn1) in both crispants and established homozygous mutants with whole mount in-situ hybridization (WISH) on gdnf mutants showing reduced otpb and lmx1b.1 expression in the ventral diencephalon. Interestingly, locomotor function of crispants was only impacted at 7 dpf, but not earlier. Lastly, as expected, gdnf deficiency heightened crispants vulnerability to 1-methyl-4-phenylpyridinium toxic insult. Our results suggest conservation of teleost gdnf brain function with mammals and revealed the interactions between gdnf and transcription factors in dopaminergic neuron differentiation.
    Matched MeSH terms: Cell Differentiation/physiology*
  8. Lau SX, Leong YY, Ng WH, Ng AWP, Ismail IS, Yusoff NM, et al.
    Cell Biol Int, 2017 Jun;41(6):697-704.
    PMID: 28403524 DOI: 10.1002/cbin.10774
    Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34+hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 108 ± 1.8 × 107after day 7 compared to the conditioned medium and the control group (8.9 × 107 ± 1.1 × 108and 7.0 × 107 ± 3.3 × 106respectively, P cell was greater compared to earlier passages, indicating successful RBC differentiation. Cord blood-derived CD34+HSCs can be greatly expanded by co-culturing with MSCs without affecting the RBC differentiation capability, suggesting the importance of direct MSC-HSCs contact in HSC expansion and RBC differentiation.
    Matched MeSH terms: Cell Differentiation/physiology
  9. Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, et al.
    Aging (Albany NY), 2016 12 15;9(1):114-132.
    PMID: 27992856 DOI: 10.18632/aging.101127
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
    Matched MeSH terms: Cell Differentiation/physiology*
  10. Choong PF, Teh HX, Teoh HK, Ong HK, Choo KB, Sugii S, et al.
    Int J Med Sci, 2014;11(11):1154-60.
    PMID: 25170299 DOI: 10.7150/ijms.8281
    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.
    Matched MeSH terms: Cell Differentiation/physiology
  11. Duffy CR, Zhang R, How SE, Lilienkampf A, De Sousa PA, Bradley M
    Biomaterials, 2014 Jul;35(23):5998-6005.
    PMID: 24780167 DOI: 10.1016/j.biomaterials.2014.04.013
    Mesenchymal stems cells (MSCs) are currently the focus of numerous therapeutic approaches in tissue engineering/repair because of their wide multi-lineage potential and their ability to modulate the immune system response following transplantation. Culturing these cells, while maintaining their multipotency in vitro, currently relies on biological substrates such as gelatin, collagen and fibronectin. In addition, harvesting cells from these substrates requires enzymatic or chemical treatment, a process that will remove a multitude of cellular surface proteins, clearly an undesirable process if cells are to be used therapeutically. Herein, we applied a high-throughput 'hydrogel microarray' screening approach to identify thermo-modulatable substrates which can support hES-MP and ADMSC growth, permit gentle reagent free passaging, whilst maintaining multi-lineage potential. In summary, the hydrogel substrate identified, poly(AEtMA-Cl-co-DEAA) cross-linked with MBA, permitted MSCs to be maintained over 10 passages (each time via thermo-modulation), with the cells retaining expression of MSC associated markers and lineage potency. This chemically defined system allowed the passaging and maintenance of cellular phenotype of this clinically important cell type, in the absence of harsh passaging and the need for biological substrates.
    Matched MeSH terms: Cell Differentiation/physiology
  12. Safwani WK, Makpol S, Sathapan S, Chua KH
    Cell Tissue Bank, 2013 Jun;14(2):289-301.
    PMID: 22476937 DOI: 10.1007/s10561-012-9309-1
    Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.
    Matched MeSH terms: Cell Differentiation/physiology
  13. Ruszymah BH, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, et al.
    Int J Pediatr Otorhinolaryngol, 2007 Aug;71(8):1225-34.
    PMID: 17531328
    This study was aimed at regenerating autologous elastic cartilage for future use in pediatric ear reconstruction surgery. Specific attentions were to characterize pediatric auricular chondrocyte growth in a combination culture medium and to assess the possibility of elastic cartilage regeneration using human fibrin.
    Matched MeSH terms: Cell Differentiation/physiology
  14. Chong PP, Selvaratnam L, Abbas AA, Kamarul T
    J Orthop Res, 2012 Apr;30(4):634-42.
    PMID: 21922534 DOI: 10.1002/jor.21556
    The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
    Matched MeSH terms: Cell Differentiation/physiology
  15. Simon C, Gan QF, Kathivaloo P, Mohamad NA, Dhamodharan J, Krishnan A, et al.
    Int J Mol Sci, 2019 Jan 29;20(3).
    PMID: 30699944 DOI: 10.3390/ijms20030568
    Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
    Matched MeSH terms: Cell Differentiation/physiology
  16. Subramani B, Subbannagounder S, Ramanathanpullai C, Palanivel S, Ramasamy R
    Exp Biol Med (Maywood), 2017 03;242(6):645-656.
    PMID: 28092181 DOI: 10.1177/1535370216688568
    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H2O2) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H2O2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H2O2. The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( IKDR, IKCa, Ito and INa.TTX) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H2O2. Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H2O2. Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.
    Matched MeSH terms: Cell Differentiation/physiology
  17. Ong ALC, Ramasamy TS
    Ageing Res Rev, 2018 May;43:64-80.
    PMID: 29476819 DOI: 10.1016/j.arr.2018.02.004
    Regulatory role of Sirtuin 1 (SIRT1), one of the most extensively studied members of its kind in histone deacetylase family in governing multiple cellular fates, is predominantly linked to p53 activity. SIRT1 deacetylates p53 in a NAD+-dependent manner to inhibit transcription activity of p53, in turn modulate pathways that are implicated in regulation of tissue homoeostasis and many disease states. In this review, we discuss the role of SIRT1-p53 pathway and its regulatory axis in the cellular events which are implicated in cellular aging, cancer and reprogramming. It is noteworthy that these cellular events share few common regulatory pathways, including SIRT1-p53-LDHA-Myc, miR-34a,-Let7 regulatory network, which forms a positive feedback loop that controls cell cycle, metabolism, proliferation, differentiation, epigenetics and many others. In the context of aging, SIRT1 expression is reduced as a protective mechanism against oncogenesis and for maintenance of tissue homeostasis. Interestingly, its activation in aged cells is evidenced in response to DNA damage to protect the cells from p53-dependent apoptosis or senescence, predispose these cells to neoplastic transformation. Importantly, the dual roles of SIRT1-p53 axis in aging and tumourigenesis, either as tumour suppressor or tumour promoter are determined by SIRT1 localisation and type of cells. Conceptualising the distinct similarity between tumorigenesis and cellular reprogramming, this review provides a perspective discussion on involvement of SIRT1 in improving efficiency in the induction and maintenance of pluripotent state. Further research in understanding the role of SIRT1-p53 pathway and their associated regulators and strategies to manipulate this regulatory axis very likely foster the development of therapeutics and strategies for treating cancer and aging-associated degenerative diseases.
    Matched MeSH terms: Cell Differentiation/physiology
  18. Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, et al.
    Nat Commun, 2018 03 14;9(1):1075.
    PMID: 29540680 DOI: 10.1038/s41467-018-03425-3
    A central question in stem cell biology is the relationship between stem cells and their niche. Although previous reports have uncovered how signaling molecules released by niche cells support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6 signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral process of stem cell activity to support propagation and self-renewal, and may explain the effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the regenerative activity of exogenous laminin-111 therapy.
    Matched MeSH terms: Cell Differentiation/physiology
  19. AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:225-233.
    PMID: 25686943 DOI: 10.1016/j.msec.2014.12.070
    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.
    Matched MeSH terms: Cell Differentiation/physiology
  20. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
    Matched MeSH terms: Cell Differentiation/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links