Displaying publications 21 - 40 of 143 in total

Abstract:
Sort:
  1. Sabbatani S, Fiorino S, Manfredi R
    Infez Med, 2012 Mar;20(1):5-11.
    PMID: 22475654
    Epidemic foci of Plasmodium knowlesi malaria have been identified during the past ten years in Malaysia, in particular in the States of Sarawak and Sabah (Malaysia Borneo), and in the Pahang region (peninsular Malaysia). Based on a review of the available recent international literature, the authors underline the importance of molecular biology examinations, polymerase chain reactions (PCR), performed with primers specific for P. knowlesi, since the current microscopic examination (haemoscope) may fail to distinguish P. knowlesi from Plasmodium malariae, due to the very similar appearance of the two parasites. P. knowlesi has been described as the causal agent of life-threatening and lethal forms of malaria: its clinical picture is more severe when compared with that of P. malariae, since the disease is characterized by greater parasitaemia, as opposed to that documented in the course of P. malariae disease. The most effective carrier is Anopheles leucosphyrus: this mosquito is attracted by both humans and monkeys. Among primates, the natural hosts of P. knowlesi are Macaca fascicularis and Macaca nemestina, while Saimiri scirea and Macaca mulatta, which cannot become infected in nature, may be useful in experimental models. When underlining the potentially severe evolution, we note the key role played by prompt disease recognition, which is expected to be more straightforward in patients monitored in endemic countries at high risk, but should be carefully implemented for subjects being admitted to hospital in Western countries suffering from the typical signs and symptoms of malaria, after travelling in South-East Asia where they were engaged in excursions in the tropical forest (trekking, and similar outdoor activities). In these cases, the diagnosis should be prompt, and suitable treatment should follow. According to data in the literature, in non-severe cases chloroquine proves very effective against P. knowlesi, achieving the disappearance of signs and symptoms in 96% of cases after only 24 hours after treatment start. In the light of the emerging epidemiological data, P. knowlesi should be added to Plasmodium vivax, Plasmodium ovale, P. malariae, and Plasmodium falciparum, as the fifth aetiological agent of malaria. During the next few years, it will become mandatory to plan an appropriate surveillance program of the epidemiological evolution, paying also great attention to the clinical features of patients affected by P. knowlesi malaria, which are expected to worsen according to the time elapsed; some studies seem to point out greater severity according to increased parasitaemia, paralleling the increased interhuman infectious passages of the plasmodium.
    Matched MeSH terms: Chloroquine/therapeutic use
  2. Saad B, Kanapathy K, Ahmad MN, Hussin AH, Ismail Z
    Talanta, 1991 Dec;38(12):1399-402.
    PMID: 18965315
    Three main types of PVC solvent polymeric membrane ion-selective electrodes for chloroquine are described. They are based on three ion-pairing agents namely dipicrylamine (DPA), tetraphenylborate (TPB) or tetrakis(4-chlorophenyl)borate (TCPB) with either dioctylphenyl phosphonate (DOPP) or trioctyl phosphate (TOP) solvent mediator. All electrodes exhibit Nernstian responses, fast dynamic response times and a wide useful pH range. The best all-round electrode is based on TPB and TOP plasticizing solvent mediators with a limit of detection of 7.1 x 10(-6)M and was utilized for the assay of chloroquine in tablets. Direct potentiometric determinations with either the analyte addition method or the normal calibration method gave results comparable to the official method.
    Matched MeSH terms: Chloroquine
  3. Saad B, Zin ZM, Jab MS, Rahman IA, Saleh MI, Mahsufi S
    Anal Sci, 2005 May;21(5):521-4.
    PMID: 15913140
    Poly (vinyl chloride) membrane electrodes that responded selectively towards the antimalarial drug chloroquine are described. The electrodes were based on the use of the lipophilic potassium tetrakis(4-chlorophenyl)borate as ion-exchanger and bis(2-ethylhexyl)adipate (BEHA), or trioctylphosphate (TOP) or dioctylphenylphosphonate (DOPP) as plasticizing solvent mediator. All electrodes produced good quality characteristics such as Nernstian- and rapid responses, and are minimally interfered with by the alkali and alkaline earth metal ions tested. The membranes were next applied to a flow-through device, enabling it to function as flow-injection analysis (FIA) detector. The performance of the sensor after undergoing the FIA optimization was further evaluated for its selectivity characteristics and lifetime. Results for the determination of chloroquine in synthetic samples that contained common tablet excipients such as glucose, starch, and cellulose, and other foreign species such as cations, citric acid or lactic acid were generally satisfactory. The sensor was also successfully used for the determination of the active ingredients in mock tablets, synthetic fluids and biological fluids. The sensor was applied for the determination of active ingredients and the dissolution profile of commercial tablets was also established.
    Matched MeSH terms: Chloroquine/analysis*
  4. SANDOSHAM AA, EYLES DE, MONTGOMERY R
    Med J Malaysia, 1964 Mar;18:172-83.
    PMID: 14157183
    Matched MeSH terms: Chloroquine*
  5. Rumaseb A, Moraes Barros RR, Sá JM, Juliano JJ, William T, Braima KA, et al.
    Antimicrob Agents Chemother, 2023 Jul 18;67(7):e0161022.
    PMID: 37314336 DOI: 10.1128/aac.01610-22
    Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.
    Matched MeSH terms: Chloroquine/pharmacology; Chloroquine/therapeutic use
  6. Rain AN, Radzan T, Sajiri S, Mak JW
    PMID: 9279996
    In vitro sensitivity of Acanthamoeba castellani was tested to three drugs: Chloroquine, ivermectin and fungizone (amphotericin B). Sensitivity was demonstrated to the latter two compounds but not to chloroquine. Thus ivermectin and amphotericin B show promise as therapeutic agents against this parasite.
    Matched MeSH terms: Chloroquine/pharmacology*
  7. Rain AN, Roxas CC, Mak JW
    PMID: 8266248
    Matched MeSH terms: Chloroquine/therapeutic use
  8. Rahman MT
    J Herb Med, 2020 Oct;23:100382.
    PMID: 32834942 DOI: 10.1016/j.hermed.2020.100382
    An effective vaccine to prevent the SARS-CoV-2 causing COVID-19 is yet to be approved. Further there is no drug that is specific to treat COVID-19. A number of antiviral drugs such as Ribavirin, Remdesivir, Lopinavir/ritonavir, Azithromycin and Doxycycline have been recommended or are being used to treat COVID-19 patients. In addition to these drugs, rationale and evidence have been presented to use chloroquine to treat COVID-19, arguably with certain precautions and criticism. In line with the proposed use of chloroquine, Nigella sativa (black seed) could be considered as a natural substitute that contains a number of bioactive components such as thymoquinone, dithymoquinone, thymohydroquinone, and nigellimine. Further benefits to use N. sativa could be augmented by Zn supplement. Notably, Zn has been proven to improve innate and adaptive immunity in the course of any infection, be it by pathogenic virus or bacteria. The effectiveness of the Zn salt supplement could also be enhanced with N. sativa as its major bioactive component might work as ionophore to allow Zn2+ to enter pneumocytes - the target cell for SARSCoV-2. Given those benefits, this review paper describes how N. sativa in combination with Zn could be useful as a complement to COVID-19 treatment.
    Matched MeSH terms: Chloroquine
  9. Rahman MT, Idid SZ
    Biol Trace Elem Res, 2021 Feb;199(2):550-558.
    PMID: 32458149 DOI: 10.1007/s12011-020-02194-9
    The current COVID-19 pandemic caused by SARS-CoV-2 has prompted investigators worldwide to search for an effective anti-viral treatment. A number of anti-viral drugs such as ribavirin, remdesivir, lopinavir/ritonavir, antibiotics such as azithromycin and doxycycline, and anti-parasite such as ivermectin have been recommended for COVID-19 treatment. In addition, sufficient pre-clinical rationale and evidence have been presented to use chloroquine for the treatment of COVID-19. Furthermore, Zn has the ability to enhance innate and adaptive immunity in the course of a viral infection. Besides, Zn supplement can favour COVID-19 treatment using those suggested and/or recommended drugs. Again, the effectiveness of Zn can be enhanced by using chloroquine as an ionophore while Zn inside the infected cell can stop SARS-CoV-2 replication. Given those benefits, this perspective paper describes how and why Zn could be given due consideration as a complement to the prescribed treatment of COVID-19.
    Matched MeSH terms: Chloroquine/therapeutic use
  10. Rahman KM
    Rev. Infect. Dis., 1982 9 1;4(5):985-91.
    PMID: 6755616
    Malaria is a major public health problem in Malaysia, particularly in peninsular Malaysia and the state of Sabah. An eradication program started in the states of Sabah and Sarawak in 1961 initially was remarkably successful. A similar but staged program was started in peninsular Malaysia in 1967 and was also quite successful. However, a marked upsurge in incidence in Sabah in 1975-1978 showed that malaria is still a major hazard. The disease leads to great economic losses in terms of the productivity of the labor force and the learning capacity of schoolchildren. The topography, the climate, and the migrations of the people due to increased economic activity are similar in peninsular Malaysia, Sabah, and Sarawak. However, the epidemiologic picture differs strikingly from area to area in terms of species of vectors, distribution of parasitic species, and resistance of Plasmodium falciparum to chloroquine. Likewise, the problems faced by the eradication or control programs in the three regions are dissimilar. Because solutions to only some of these problems are possible, the eradication of malaria in Malaysia is not likely in the near future. However, the situation offers an excellent opportunity for further studies of antimalaria measures.
    Matched MeSH terms: Chloroquine/pharmacology
  11. Pribadi W, Dakung LS, Gandahusada S, Daldyono
    PMID: 7020096
    A report was made of 4 cases of chloroquine resistant Plasmodium falciparum infections. The infections, detected in Jakarta, were imported from Kotabumi, Tanjung Karang, the Island of Pidada in the Lampung Province and from Pangkalpinang on the Island Bangka in the Province of South Sumatra. Treatment with courses of 1500 mg chloroquine base and with increased dosages up to 2250 mg base failed to cure the patients. The chloroquine sensitivity test in vitro was carried out in 3 patients, which showed that the Plasmodium falciparum strains were resistant to chloroquine at the R I level. The strains appeared to be similar to the Malaya Camp strain. In vivo observations revealed that the parasites were resistant at the R I level with a delayed recrudescence. The chloroquine resistant falciparum malaria cases, acquired in South Sumatra, may therefore be regarded as the first reported cases from a focus outside the already known two foci in Indonesia, namely East Kalimantan and Irian Jaya. It may be expected that chloroquine resistant Plasmodium falciparum will be encountered in other parts of Indonesia in the near future. The use of a combination of sulfadoxine and pyrimethamine should not be recommended in Indonesia because chloroquine is still considered the drug of choice against all malaria infections in Indonesia.
    Matched MeSH terms: Chloroquine/therapeutic use*
  12. Ponnampalam JT
    Trans R Soc Trop Med Hyg, 1981;75(3):372-7.
    PMID: 7034311
    Doxycycline in a single dose was found to be a valuable drug in the treatment of chloroquine-resistant falciparum malaria. It was less effective in a single daily dose of 4 mg/kg body-weight for four days, when it cured only five out of nine patients, while a dosage of 4 mg/kg body-weight for seven days cured 23 out of 26 patients.
    Matched MeSH terms: Chloroquine/therapeutic use
  13. Ponnampalam JT, Seow CL, Roy OS
    J Trop Med Hyg, 1976 Oct;79(10):220-5.
    PMID: 796479
    Matched MeSH terms: Chloroquine/administration & dosage; Chloroquine/therapeutic use*
  14. Paul FM, Kleevens JW
    J Singapore Paediatr Soc, 1969 Apr;11(1):62-6.
    PMID: 5366340
    Matched MeSH terms: Chloroquine/therapeutic use
  15. Pan B, Pei FQ, Ruan CW, Lin RX, Cen YZ, Liu MR, et al.
    PMID: 30141606
    Objective: To diagnose and treat the first imported active case of Plasmodium knowlesi infection in China.

    Methods: The clinical information of the patient was collected. Microscopy of blood smear was conducted after Giemsa staining. Genomic DNA was extracted from blood, and PCR was conducted to amplify rDNA. The PCR products were sequenced and analyzed with BLAST

    Results: The patient returned from a one-week tour in a tropical rain forest in Malaysia. The first disease attack occurred in Guangzhou on Oct. 16, 2014, with fever, shivering and sweating. The patient was initially diagnosed as malaria and hospitalized on Oct. 26, 2014. Microscopic observation revealed typical forms of P. knowlesi in blood smear. The red blood cells became enlarged, with big trophozoites appearing as a ring with dual cores and dark brown malaria pigment. The trophozoites were slightly bigger and thicker than P. falciparum. The schizont had 6-8 merozoites, with obvious brown malaria pigment. PCR resulted in a specific band of 1 099 bp. BLAST analysis showed that the sequence of the PCR product was 99% homologous to P. knowlesi (acession No. AM910985.1, L07560.1 and AY580317.1). The patient was diagnosed as P. knowlesi infection, and was then given an 8-day treatment with chloroquine and primaquine, together with dihydroartemisinin piperaquine phosphate tablet. The patient was discharged after recovery on Oct. 28, 2014.

    Conclusion: According to the clinical symptoms, epidemiological history and laboratory test, the patient has been confirmed as P. knowlesi infection. It may also be the first active case of knowlesi malaria reported in China.

    Matched MeSH terms: Chloroquine
  16. Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, et al.
    Am J Trop Med Hyg, 2020 11;103(5):1910-1917.
    PMID: 32815508 DOI: 10.4269/ajtmh.20-0491
    Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5-8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26-14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91-27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
    Matched MeSH terms: Chloroquine/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links