Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Elsoragaby S, Yahya A, Nawi NM, Mahadi MR, Mairghany M, Muazu A, et al.
    Heliyon, 2020 Nov;6(11):e05332.
    PMID: 33294651 DOI: 10.1016/j.heliyon.2020.e05332
    Measurement of human energy expenditure during crop production helps in the optimization of production operations and costs by identifying steps which that can benefit from the use of appropriate mechanization technologies. This study measures human energy expenditure associated with all 6 major rice (Oryza sativa L.) cultivation operations using two measurement methods-i.e. conventional human energy expenditure method and direct measurement with a Garmin forerunner 35 body media. The aim of this study was to provide a detailed comparison of these two methods and document the human energy costs in a manner that will identify steps to be taken to help optimize agricultural practices. Results (mean + 95%CL) revealed that the total human energy expenditure obtained through the conventional method was 25.5% higher (33.3 ± 1 versus 26.6 ± 1.3) in transplanting and 26.1% higher (30.3 ± 1.9 versus 24.0 ± 2.1) than the human energy expenditure recorded using the Garmin method in broadcast seeding method. Similarly, during the harvesting operation, the conventional measurement and Garmin measurement methods differed significantly, with the conventional method the human energy expenditure was 89.9% higher (3.2 ± 0.4 versus 1.68 ± 0.2) in the fields using the transplanting and 88.7% higher (3.3 ± 0.5 versus 1.8 ± 0.3) in the fields using the broadcast seeding than the human energy expenditure recorded using the Garmin method. When using Garmin method, the human energy expenditure in the case of using the midsize combine harvester was 13.49% lesser (592.4 ± 67.2 versus 522.0 ± 75.1) than the case of using conventional one. Results based on heart rate also indicated that operations such as tillage were less intensive (72 ± 3.3 bpm) compared with operations such as chemicals spraying (135 ± 4 bpm). Although we did not have a criterion measure available to determine which method was the most accurate, the Garmin measurement gives an estimate of actual physical human energy expended in performing a specific task with consider all conditions and thus more information to aid in identifying critical operations that could be optimized and mechanized.
    Matched MeSH terms: Crop Production
  2. Ali LG, Nulit R, Ibrahim MH, Yien CYS
    Sci Rep, 2021 Feb 16;11(1):3864.
    PMID: 33594103 DOI: 10.1038/s41598-021-83434-3
    Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.
    Matched MeSH terms: Crop Production/methods
  3. Teo YX, Chan YS, Gouwanda D, Gopalai AA, Nurzaman SG, Thannirmalai S
    Sci Rep, 2021 07 22;11(1):15020.
    PMID: 34294775 DOI: 10.1038/s41598-021-94268-4
    Although global demand for palm oil has been increasing, most activities in the oil palm plantations still rely heavily on manual labour, which includes fresh fruit bunch (FFB) harvesting and loose fruit (LF) collection. As a result, harvesters and/or collectors face ergonomic risks resulting in musculoskeletal disorder (MSD) due to awkward, extreme and repetitive posture during their daily work routines. Traditionally, indirect approaches were adopted to assess these risks using a survey or manual visual observations. In this study, a direct measurement approach was performed using Inertial Measurement Units, and surface Electromyography sensors. The instruments were attached to different body parts of the plantation workers to quantify their muscle activities and assess the ergonomics risks during FFB harvesting and LF collection. The results revealed that the workers generally displayed poor and discomfort posture in both activities. Biceps, multifidus and longissimus muscles were found to be heavily used during FFB harvesting. Longissimus, iliocostalis, and multifidus muscles were the most used muscles during LF collection. These findings can be beneficial in the design of various assistive tools which could improve workers' posture, reduce the risk of injury and MSD, and potentially improve their overall productivity and quality of life.
    Matched MeSH terms: Crop Production*
  4. Venkatappa M, Sasaki N, Han P, Abe I
    Sci Total Environ, 2021 Nov 15;795:148829.
    PMID: 34252779 DOI: 10.1016/j.scitotenv.2021.148829
    While droughts and floods have intensified in recent years, only a handful of studies have assessed their impacts on croplands and production in Southeast Asia. Here, we used the Google Earth Engine to assess the droughts and floods and their impacts on croplands and crop production over 40 years from 1980 to 2019. Using the Palmer Drought Severity Index (PDSI) as the basis for determining the drought and flood levels, and crop damage levels, crop production loss in both the Monsoon Climate Region (MCR) and the Equatorial Climate Region (ECR) of Southeast Asia was assessed over 47,192 grid points with 10 × 10-kilometer resolution. We found that rainfed crops were severely affected by droughts in the MCR and floods in the ECR. About 9.42 million ha and 3.72 million ha of cropland was damaged by droughts and floods, respectively. We estimated a total loss of 20.64 million tons of crop production between 2015 and 2019. Rainfed crops in Thailand, Cambodia, and Myanmar were strongly affected by droughts, whereas Indonesia, the Philippines, and Malaysia were more affected by floods over the same period. Accordingly, four levels of policy interventions were prioritized by considering the geolocated crop damage levels.
    Matched MeSH terms: Crop Production
  5. Chen M, Atiqul Haq SM, Ahmed KJ, Hussain AHMB, Ahmed MNQ
    PLoS One, 2021;16(10):e0258196.
    PMID: 34673797 DOI: 10.1371/journal.pone.0258196
    Climate change is likely to worsen the food security situation through its impact on food production, which may indirectly affect fertility behaviour. This study examines the direct and indirect effects of climate change (e.g., temperature and precipitation) via the production of major crops, as well as their short- and long-term effects on the total fertility rate (TFR) in Bangladesh. We used structural equation modelling (SEM) to perform path analysis and distinguish the direct influence of climate change on fertility and its indirect influence on fertility through food security. We also applied the error correction model (ECM) to analyze the time-series data on temperature and precipitation, crop production and fertility rate of Bangladesh from 1966 to 2015. The results show that maximum temperature has a direct effect and indirect negative effect-via crop production-on TFR, while crop production has a direct positive effect and indirect negative effect-via infant mortality-on TFR. In the short term, TFR responds negatively to the maximum temperature but positively in the long term. The effect of rainfall on TFR is found to be direct, positive, but mainly short-term. Although indicators of economic development play an important part in the fertility decline in Bangladesh, some climate change parameters and crop production are non-negligible factors.
    Matched MeSH terms: Crop Production
  6. Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, et al.
    Int J Mol Sci, 2022 Jan 10;23(2).
    PMID: 35054923 DOI: 10.3390/ijms23020737
    Rice, the main staple food for about half of the world's population, has had the growth of its production stagnate in the last two decades. One of the ways to further improve rice production is to enhance the associations between rice plants and the microbiome that exists around, on, and inside the plant. This article reviews recent developments in understanding how microorganisms exert positive influences on plant growth, production, and health, focusing particularly on rice. A variety of microbial species and taxa reside in the rhizosphere and the phyllosphere of plants and also have multiple roles as symbiotic endophytes while living within plant tissues and even cells. They alter the morphology of host plants, enhance their growth, health, and yield, and reduce their vulnerability to biotic and abiotic stresses. The findings of both agronomic and molecular analysis show ways in which microorganisms regulate the growth, physiological traits, and molecular signaling within rice plants. However, many significant scientific questions remain to be resolved. Advancements in high-throughput multi-omics technologies can be used to elucidate mechanisms involved in microbial-rice plant associations. Prospectively, the use of microbial inoculants and associated approaches offers some new, cost-effective, and more eco-friendly practices for increasing rice production.
    Matched MeSH terms: Crop Production*
  7. Bidoglio GA, Mueller ND, Kastner T
    Sci Total Environ, 2023 May 15;873:162226.
    PMID: 36801408 DOI: 10.1016/j.scitotenv.2023.162226
    In our globalized world, local impacts of agricultural production are increasingly driven by consumption in geographically distant places. Current agricultural systems strongly rely on nitrogen (N) fertilization to increase soil fertility and crop yields. Yet, a large portion of N added to cropland is lost through leaching / runoff potentially leading to eutrophication in coastal ecosystems. By coupling data on global production and N fertilization for 152 crops with a Life Cycle Assessment (LCA)-based model, we first estimated the extent of oxygen depletion occurring in 66 Large Marine Ecosystems (LMEs) due to agricultural production in the watersheds draining into these LMEs. We then linked this information to crop trade data to assess the displacement from consuming to producing countries, in terms of oxygen depletion impacts associated to our food systems. In this way, we characterized how impacts are distributed between traded and domestically sourced agricultural products. We found that few countries dominate global impacts and that cereal and oil crop production accounts for the bulk of oxygen depletion impacts. Globally, 15.9 % of total oxygen depletion impacts of crop production are ascribable to export-driven production. However, for exporting countries like Canada, Argentina or Malaysia this share is much higher, often up to three-quarters of their production impacts. In some importing countries, trade contributes to reduce pressure on already highly affected coastal ecosystems. This is the case for countries whose domestic crop production is associated with high oxygen depletion intensities, i.e. the impact per kcal produced, such as Japan or South Korea. Next to these positive effects trade can play in lowering overall environmental burdens, our results also highlight the importance of a holistic food system perspective when aiming to reduce the oxygen depletion impacts of crop production.
    Matched MeSH terms: Crop Production
  8. Tsong JL, Khor SM
    Anal Methods, 2023 Jul 06;15(26):3125-3148.
    PMID: 37376849 DOI: 10.1039/d3ay00647f
    Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
    Matched MeSH terms: Crop Production
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links