Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK
    Appl Microbiol Biotechnol, 2017 Nov;101(22):8077-8088.
    PMID: 28942548 DOI: 10.1007/s00253-017-8493-0
    This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.
    Matched MeSH terms: DNA/isolation & purification*
  2. Abdul Rahman Z, Choay-Hoong L, Mat Khairuddin R, Ab Razak S, Othman AS
    J Genet, 2012 Aug;91(2):e82-5.
    PMID: 22932425
    Matched MeSH terms: DNA/isolation & purification
  3. Wong YP, Othman S, Lau YL, Radu S, Chee HY
    J Appl Microbiol, 2018 Mar;124(3):626-643.
    PMID: 29165905 DOI: 10.1111/jam.13647
    Loop-mediated isothermal amplification (LAMP) amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions by using a DNA polymerase with high displacement strand activity and a set of specifically designed primers to amplify targeted DNA strands. Following its first discovery by Notomi et al. ( Nucleic Acids Res 28: E63), LAMP was further developed over the years which involved the combination of this technique with other molecular approaches, such as reverse transcription and multiplex amplification for the detection of infectious diseases caused by micro-organisms in humans, livestock and plants. In this review, available types of LAMP techniques will be discussed together with their applications in detection of various micro-organisms. Up to date, there are varieties of LAMP detection methods available including colorimetric and fluorescent detection, real-time monitoring using turbidity metre and detection using lateral flow device which will also be highlighted in this review. Apart from that, commercialization of LAMP technique had also been reported such as lyophilized form of LAMP reagents kit and LAMP primer sets for detection of pathogenic micro-organisms. On top of that, advantages and limitations of this molecular detection method are also described together with its future potential as a diagnostic method for infectious disease.
    Matched MeSH terms: DNA/isolation & purification
  4. Tajima T, Malim TP, Inoue E
    Primates, 2018 Mar;59(2):127-133.
    PMID: 29387973 DOI: 10.1007/s10329-017-0648-1
    The reproductive success of male primates is not always associated with dominance status. For example, even though male orangutans exhibit intra-sexual dimorphism and clear dominance relationships exist among males, previous studies have reported that both morphs are able to sire offspring. The present study aimed to compare the reproductive success of two male morphs, and to determine whether unflanged males sired offspring in a free-ranging population of Bornean orangutans, using 12 microsatellite loci to determine the paternity of eight infants. A single flanged male sired most of the offspring from parous females, and an unflanged male sired a firstborn. This is consistent with our observation that the dominant flanged male showed little interest in nulliparous females, whereas the unflanged males frequently mated with them. This suggests that the dominant flanged male monopolizes the fertilization of parous females and that unflanged males take advantage of any mating opportunities that arise in the absence of the flanged male, even though the conception probability of nulliparous females is relatively low.
    Matched MeSH terms: DNA/isolation & purification
  5. Sultana S, Ali ME, Hossain MAM, Asing, Naquiah N, Zaidul ISM
    Food Res Int, 2018 03;105:19-28.
    PMID: 29433207 DOI: 10.1016/j.foodres.2017.10.065
    Species substitution, the use of a low value fish in place of a high value fish, is the biggest problem in international trade and the leading cause of fraud in the fisheries arena sector. Current DNA barcoding systems have partly solved this problem but also failed in many instances to amplify PCR targets from highly processed products because of the degradation of a longer barcode marker (~650bp). In the present study, a novel mini barcode marker (295bp) was developed to discriminate fish species in raw and processed states forms. The barcode primers were cross-tested against 33 fish species and 15 other animal species and found to be universal for all the tested fish varieties. When 20 commercial fish products of five different categories were screened, all commercial fish sample yielded positive bands for the novel fish barcode. PCR product was sequenced to retrieve the species IDs that reflected 55% (11/20) of Malaysian fish products were mislabeled.
    Matched MeSH terms: DNA/isolation & purification
  6. Banihashemian SM, Periasamy V, Boon Tong G, Abdul Rahman S
    PLoS One, 2016;11(3):e0149488.
    PMID: 26999445 DOI: 10.1371/journal.pone.0149488
    Studying the effect of a magnetic field on oligonucleotide DNA can provide a novel DNA manipulation technique for potential application in bioengineering and medicine. In this work, the optical and electrochemical response of a 100 bases oligonucleotides DNA, cytosine-guanine (CG100), is investigated via exposure to different magnetic fields (250, 500, 750, and 1000 mT). As a result of the optical response of CG100 to the magnetic field, the ultra-violet-visible spectrum indicated a slight variation in the band gap of CG100 of about 0.3 eV. Raman spectroscopy showed a significant deviation in hydrogen and phosphate bonds' vibration after exposure to the magnetic field. Oligonucleotide DNA mobility was investigated in the external electric field using the gel electrophoresis technique, which revealed a small decrease in the migration of CG100 after exposure to the magnetic field.
    Matched MeSH terms: DNA/isolation & purification*
  7. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: DNA/isolation & purification
  8. Sajali N, Wong SC, Hanapi UK, Abu Bakar Jamaluddin S, Tasrip NA, Mohd Desa MN
    J Food Sci, 2018 Oct;83(10):2409-2414.
    PMID: 30184265 DOI: 10.1111/1750-3841.14338
    High-quality DNA extracts are imperative for downstream applications in molecular identification. Most processed food products undergo heat treatments causing DNA degradation, which hampers application of DNA-based techniques for food authentication. Moreover, the presence of inhibitors in processed food products is also problematic, as inhibitors can impede the process of obtaining high qualities and quantities of DNA. Various approaches in DNA extraction and factors in structure and texture of various food matrices affecting DNA extraction are explained in this review.
    Matched MeSH terms: DNA/isolation & purification*
  9. Al Balawi AN, Yusof NA, Kamaruzaman S, Mohammad F, Wasoh H, Al Abbosh KF, et al.
    Biomed Res Int, 2019;2019:7064073.
    PMID: 30868072 DOI: 10.1155/2019/7064073
    The present study has synthesized poly(4,4'-cyclohexylidene bisphenol oxalate) by the condensation of oxalyl chloride with 4,4'-cyclohexylidene bisphenol, where its efficacy was tested for the solid-phase extraction of DNA. The synthesized polymer in the form of a white powder was characterized by FTIR, TGA-DTG, SEM, and BET analysis. The study utilized solid-phase application of the resulting polymer to extract DNA. The analysis of results provided the information that the extraction efficiency is a strong dependent of polymer amount and binding buffer type. Among the three types of buffers tested, the GuHCl buffer produced the most satisfactory results in terms of yield and efficiency of extraction. Moreover, the absorbance ratio of A260/A280 in all of the samples varied from 1.682 to 1.491, thereby confirming the capability of poly(4,4'-cyclohexylidene bisphenol oxalate) to elute pure DNA. The results demonstrated an increased DNA binding capacity with respect to increased percentage of the polymer. The study has concluded that poly(bisphenol Z oxalate) can be applied as one of the potential candidates for the high efficiency extraction of DNA by means of a simple, cost-effective, and environmentally friendly approach compared to the other traditional solid-phase methods.
    Matched MeSH terms: DNA/isolation & purification*
  10. Tan SC, Yiap BC
    J Biomed Biotechnol, 2009;2009:574398.
    PMID: 20011662 DOI: 10.1155/2009/574398
    Extraction of DNA, RNA, and protein is the basic method used in molecular biology. These biomolecules can be isolated from any biological material for subsequent downstream processes, analytical, or preparative purposes. In the past, the process of extraction and purification of nucleic acids used to be complicated, time-consuming, labor-intensive, and limited in terms of overall throughput. Currently, there are many specialized methods that can be used to extract pure biomolecules, such as solution-based and column-based protocols. Manual method has certainly come a long way over time with various commercial offerings which included complete kits containing most of the components needed to isolate nucleic acid, but most of them require repeated centrifugation steps, followed by removal of supernatants depending on the type of specimen and additional mechanical treatment. Automated systems designed for medium-to-large laboratories have grown in demand over recent years. It is an alternative to labor-intensive manual methods. The technology should allow a high throughput of samples; the yield, purity, reproducibility, and scalability of the biomolecules as well as the speed, accuracy, and reliability of the assay should be maximal, while minimizing the risk of cross-contamination.
    Matched MeSH terms: DNA/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links