Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Saremi K, Rad SK, Tayeby F, Abdulla MA, Karimian H, Majid NA
    BMC Pharmacol Toxicol, 2019 Feb 15;20(1):13.
    PMID: 30770761 DOI: 10.1186/s40360-019-0292-z
    BACKGROUND: Basic function of bromine in body is to activate pepsin production in gastritis with low acidity. The present study encompasses a broad in vivo study to evaluate gastroprotective activity of a novel dibromo substituted Schiff base complex against Sprague Dawley (SD) rats.

    METHODS: 2, 2'-[1, 2-cyclohexanediylbis (nitriloethylidyne)]bis(4-bromophenol) (CNBP) is synthesized via a Schiff base reaction, using the related ketone and diamine as the starting materials. SD rats are divided as normal, ulcer control (5 ml/kg of 10% Tween 20), testing (10 and 20 mg/kg of CNBP) and reference groups (omeprazole 20 mg/kg). Except for the normal group, the rest of the groups are induced gastric ulcer by ethanol 1 h after the pre-treatment. Ulcer area, gastric wall mucus, and acidity of gastric content of the animal stomachs are measured after euthanization. Antioxidant activity of the compound is tested by Ferric reducing antioxidant power (FRAP) test and safety of the compound is identified through acute toxicity by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, activities of superoxide dismutase (SOD), catalase (CAT), levels of prostaglandins E2 (PGE2) and also malondialdehyde (MDA) are determined.

    RESULTS: Antioxidant activity of CNBP was approved via FRAP assay. Vast shallow hemorrhagic injury of gastric glandular mucosa was observed in the ulcer group compared to the CNBP-treated animals. Histological evaluations confirmed stomach epithelial defense effect of CNBP with drastic decrease of gastric ulceration, edema and leucocytes penetration of submucosal stratum. Immunostaining exhibited over-expression in HSP70 protein in CNBP-treated groups compared to that of the ulcer group. Also, gastric protein analysis showed low levels of MDA, PGE2 and high activity of SOD and CAT.

    CONCLUSIONS: CNBP with noticeable antioxidant property showed gastroprotective activity in the testing rodents via alteration of HSP70 protein expression. Also, antioxidant enzyme activities which were changed after treatment with CNBP in the animals could be elucidated as its gastroprotective properties.

    Matched MeSH terms: Dinoprostone/metabolism
  2. Saremi K, Rad SK, Khalilzadeh M, Hussaini J, Majid NA
    Acta Biochim Biophys Sin (Shanghai), 2020 Jan 02;52(1):26-37.
    PMID: 31889181 DOI: 10.1093/abbs/gmz140
    Chlorine is shown to possess anti-gastric ulcer activity, since it can inactivate Helicobacter pylori, which is regarded as one of the most common risk factors for causing gastric problems. In the current study, the gastroprotective property of a novel dichloro-substituted Schiff base complex, 2, 2'- [-1, 2-cyclohexanediylbis(nitriloethylidyne)] bis(4-chlorophenol) (CNCP), against alcohol-induced gastric lesion in SD rats was assessed. SD rats were divided into four groups, i.e. normal, ulcer control, testing, and reference groups. Ulcer area, gastric wall mucus, and also gastric acidity of the animal stomachs were measured. In addition, antioxidant activity of CNCP was evaluated and its safe dose was identified. Immunohistochemistry staining was also carried to evaluate two important proteins, i.e. Bcl2-associated X protein (Bax) and heat shock protein 70 (HSP70). Moreover, the activities of super oxide dismutase and catalase, as well as the levels of prostaglandin E2 (PGE2) and malondialdehyde (MDA) were also measured. Antioxidant activity of CNCP was approved via the aforementioned experiments. Histological evaluations showed that the compound possesses stomach epithelial defense activity. Additionally, periodic acid-Schiff staining exhibited over-expression of HSP70 and down-expression of Bax protein in the CNCP-treated rats. Moreover, CNCP caused deceased MDA level and elevated PGE2 level, and at the same time increased the activities of the two enzymes.
    Matched MeSH terms: Dinoprostone/metabolism
  3. Sugiatno E, Samsudin AR, Ibrahim MF, Sosroseno W
    Biomed Pharmacother, 2006 May;60(4):147-51.
    PMID: 16581222
    The aim of the present study was to determine the effect of nitric oxide (NO) on the production of prostaglandin E2 (PGE2) by a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite. Cells were cultured on the HA surfaces with or without the presence of NO donors (SNAP and NAP) for 3 days. The effect of NO scavenger, carboxy PTIO, or endothelial nitric oxide synthase (eNOS) inhibitor, L-NIO, was assessed by adding this scavenger in the cultures of HA-stimulated HOS cells with or without the presence of SNAP. Furthermore, HOS cells were pre-treated with anti-human integrin alphaV antibody, indomethacin, a non-specific inhibitor, aspirin, a COX-1 inhibitor, or nimesulide, a COX-2 inhibitor, prior to culturing on HA surfaces with or without the presence of SNAP. The levels of PGE2 were determined from the 3 day culture supernatants. The results showed that the production of PGE2 by HA-stimulated HOS cells was augmented by SNAP. Carboxy PTIO suppressed but L-NIO only partially inhibited the production of PGE2 by HA-stimulated HOS cells with or without the presence of exogenous NO. Pre-treatment of the cells with anti-human integrin alphaV antibody, indomethacin or nimesulide but not aspirin suppressed the production of PGE2 by HA-stimulated HOS cells with or without the presence of NO. Therefore, the results of the present study suggest that NO may up-regulate the production of PGE2 by augmenting the COX-2 pathway initiated by the binding between HOS cell-derived integrin alphaV and HA surface.
    Matched MeSH terms: Dinoprostone/metabolism*
  4. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
    Matched MeSH terms: Dinoprostone/metabolism*
  5. Tilwani RK, Vessillier S, Pingguan-Murphy B, Lee DA, Bader DL, Chowdhury TT
    Inflamm Res, 2017 Jan;66(1):49-58.
    PMID: 27658702 DOI: 10.1007/s00011-016-0991-5
    OBJECTIVE AND DESIGN: Oxygen tension and biomechanical signals are factors that regulate inflammatory mechanisms in chondrocytes. We examined whether low oxygen tension influenced the cells response to TNFα and dynamic compression.

    MATERIALS AND METHODS: Chondrocyte/agarose constructs were treated with varying concentrations of TNFα (0.1-100 ng/ml) and cultured at 5 and 21 % oxygen tension for 48 h. In separate experiments, constructs were subjected to dynamic compression (15 %) and treated with TNFα (10 ng/ml) and/or L-NIO (1 mM) at 5 and 21 % oxygen tension using an ex vivo bioreactor for 48 h. Markers for catabolic activity (NO, PGE2) and tissue remodelling (GAG, MMPs) were quantified by biochemical assay. ADAMTS-5 and MMP-13 expression were examined by real-time qPCR. 2-way ANOVA and a post hoc Bonferroni-corrected t test were used to analyse data.

    RESULTS: TNFα dose-dependently increased NO, PGE2 and MMP activity (all p 

    Matched MeSH terms: Dinoprostone/metabolism
  6. Wen CT, Hussein SZ, Abdullah S, Karim NA, Makpol S, Mohd Yusof YA
    Asian Pac J Cancer Prev, 2012;13(4):1605-10.
    PMID: 22799375
    Gelam and Nenas monofloral honeys were investigated in this study for their chemopreventive effects against HT 29 colon cancer cells. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolim) assays showed more effective inhibition of colon cancer cells proliferation by Gelam honey with IC₅₀ values of 39.0 mg/ml and 85.5 mg/ml respectively after 24 hours of treatment. Alkali comet assays revealed both honeys increased DNA damage significantly in a dose dependent manner. In addition, annexin V-FITC/PI flow cytometry demonstrated that at IC₅₀ concentrations and above, both Gelam and Nenas honeys induced apoptosis significantlyat values higher than for necrosis (p<0.05). Measurement of prostaglandin E₂ (PGE₂) confirmed that Gelam and Nenas honeys reduced its production in H₂O₂ inflammation-induced colon cancer cells. In conclusion, our study indicated and confirmed that both Gelam and Nenas honeys are capable of suppressing the growth of HT 29 colon cancer cells by inducing apoptosis and suppressing inflammation.
    Matched MeSH terms: Dinoprostone/metabolism
  7. Yusof WN, Nagaratnam M, Koh CL, Puthucheary S, Pang T
    Microbiol. Immunol., 1993;37(8):667-70.
    PMID: 8246829
    Human mononuclear cells pre-labeled with [3H]arachidonic acid were shown to release metabolites following in vitro addition of heat-killed Salmonella typhi (HKST). The amount of label released was significantly higher than that seen with live S. typhi (LST). Addition of increasing amounts of HKST resulted in an increased release of metabolites. Enzyme immunoassay of the culture supernatants revealed that the bulk of the metabolite released was prostaglandin E2 (PGE2). Leukotriene B4 (LTB4) and leukotriene C4 (LTC4) were not detectable in the culture supernatants. The significance and implications of these results are discussed.
    Matched MeSH terms: Dinoprostone/metabolism*
  8. Zakaria ZA, Balan T, Azemi AK, Omar MH, Mohtarrudin N, Ahmad Z, et al.
    BMC Complement Altern Med, 2016 Feb 24;16:78.
    PMID: 26912079 DOI: 10.1186/s12906-016-1041-0
    BACKGROUND: Muntingia calabura L. (family Muntingiaceae), commonly known as Jamaican cherry or kerukup siam in Malaysia, is used traditionally to treat various ailments. The aim of this study is to elucidate the possible underlying gastroprotective mechanisms of ethyl acetate fraction (EAF) of Muntingia calabura methanolic leaves extract (MEMC).

    METHODS: MEMC and its fractions were subjected to HPLC analysis to identify and quantify the presence of its phyto-constituents. The mechanism of gastroptotection of EAF was further investigated using pylorus ligation-induced gastric lesion rat model (100, 250, and 500 mg/kg). Macroscopic analysis of the stomach, evaluation of gastric content parameters such as volume, pH, free and total acidity, protein estimation, and quantification of mucus were carried out. The participation of nitric oxide (NO) and sulfhydryl (SH) compounds was evaluated and the superoxide dismutase (SOD), gluthathione (GSH), catalase (CAT), malondialdehyde (MDA), prostaglandin E2 (PGE2) and NO level in the ethanol induced stomach tissue homogenate was determined.

    RESULTS: HPLC analysis confirmed the presence of quercetin and gallic acid in EAF. In pylorus-ligation model, EAF significantly (p <0.001) prevent gastric lesion formation. Volume of gastric content and total protein content reduced significantly (p 

    Matched MeSH terms: Dinoprostone/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links