Displaying publications 21 - 40 of 244 in total

Abstract:
Sort:
  1. Rajeena Sugumaran, Pamela David Jocksing, Nur Athirah Yusof
    MyJurnal
    Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are contributors to infection cases among the Asian population. S. aureus is found in the mucous lining of noses and is mainly non-pathogenic while E. coli, mostly harmless bacteria, are found in the intestine. Pathogenic strains of both bacteria have adverse effects on the elderly and younger age group of the population. Samples were collected from recreational parks around Kota Kinabalu as they are hotspots frequently visited by families with both age groups. The bacterial samples were isolated and cultured on selective media such as Baird-Parker agar (BPA), Brain Heart Infusion (BHI) agar, MacConkey agar and Eosin-Methylene Blue (EMB) agar. Morphological characteristics of bacterial growth were observed, where S. aureus had black-shiny growth in BPA and E. coli had a metallic-green sheen in EMB agar. The suspected bacteria samples were then stained and viewed under a light microscope. S. aureus was identified as gram-positive, stained violet with a circular shape and clustered appearance. E. coli was identified as gram-negative, stained red, rod-shaped with 2 – 3 bacterial alignment. Antibiotic resistance test resulted in S. aureus and E. coli samples did not display 100% resistance among 4 antibiotics tested (ampicillin, penicillin, tetracycline and chloramphenicol). Most of the bacteria samples were a minimum inhibitory of 0.1 mg/mL of antibiotic concentration. These results provide a foundation for further research on identifying bacterial strains using molecular methods. The findings can then be used to disseminate information to the public to create awareness of potential disease outbreaks in the city.
    Matched MeSH terms: Drug Resistance, Microbial
  2. Degowin RL, Eppes RB, Carson PE, Powell RD
    Bull World Health Organ, 1966;34(5):671-81.
    PMID: 5328901
    In view of the problems caused by the chloroquine-resistance of some strains of Plasmodium falciparum, the authors have investigated the effectiveness of diaphenylsulfone against two such resistant strains, from Malaya and Viet-Nam. They found that diaphenylsulfone given during acute attacks of malaria had a blood schizontocidal activity against the Malayan resistant strain but was not rapidly effective in terminating acute attacks in non-immune persons, and that, when the drug was given prophylactically in relatively small doses, it was substantially effective in preventing patency of mosquito-induced infection with the same strain. The protective effect of diaphenylsulfone is that of a clinical prophylactic or suppressive drug; it does not appear to be a true causal prophylactic. It was also found that the protective effect is vitiated by the concurrent administration of paraaminobenzoic acid.These studies indicate a need for further assessment of the antimalarial value of sulfones and sulfonamides, both alone and in combination with other drugs, for prevention and cure.
    Matched MeSH terms: Drug Resistance, Microbial
  3. Teh AH, Wang Y, Dykes GA
    Can J Microbiol, 2014 Feb;60(2):105-11.
    PMID: 24498987 DOI: 10.1139/cjm-2013-0633
    Urinary tract infections (UTI) caused by uropathogenic Escherichia coli are one of the most common forms of human disease. In this study, the effect of the presence of newly acquired antibiotic resistance genes on biofilm formation of UTI-associated E. coli strains was examined. Two clinical UTI-associated E. coli strains (SMC18 and SMC20) carrying different combinations of virulence genes were transformed with pGEM-T, pGEM-T::KmΔAmp, or pGEM-T::Km to construct ampicillin-resistant (Km(S)Amp(R)), kanamycin-resistant (Km(R)Amp(S)), or ampicillin- and kanamycin-resistant (Km(R)Amp(R)) strains. Transformed and wild-type strains were characterized for biofilm formation, bacterial surface hydrophobicity, auto-aggregation, morphology, and attachment to abiotic surfaces. Transformation with a plasmid carrying an ampicillin resistance gene alone decreased (p < 0.05) biofilm formation by SMC18 (8 virulence marker genes) but increased (p < 0.05) biofilm formation by SMC20 (5 virulence marker genes). On the other hand, transformation with a plasmid carrying a kanamycin resistance gene alone or both ampicillin and kanamycin resistance genes resulted in a decrease (p < 0.05) in biofilm formation by SMC18 but did not affect (p > 0.05) the biofilm formation by SMC20. Our results suggest that transformation of UTI-associated E. coli with plasmids carrying different antibiotic resistance gene(s) had a significant impact on biofilm formation and that these effects were both strain dependent and varied between different antibiotics.
    Matched MeSH terms: Drug Resistance, Microbial/genetics*
  4. Husain Khan A, Abdul Aziz H, Palaniandy P, Naushad M, Cevik E, Zahmatkesh S
    Chemosphere, 2023 Oct;339:139647.
    PMID: 37516325 DOI: 10.1016/j.chemosphere.2023.139647
    Hospital wastewater has emerged as a major category of environmental pollutants over the past two decades, but its prevalence in freshwater is less well documented than other types of contaminants. Due to compound complexity and improper operations, conventional treatment is unable to remove pharmaceuticals from hospital wastewater. Advanced treatment technologies may eliminate pharmaceuticals, but there are still concerns about cost and energy use. There should be a legal and regulatory framework in place to control the flow of hospital wastewater. Here, we review the latest scientific knowledge regarding effective pharmaceutical cleanup strategies and treatment procedures to achieve that goal. Successful treatment techniques are also highlighted, such as pre-treatment or on-site facilities that control hospital wastewater where it is used in hospitals. Due to the prioritization, the regulatory agencies will be able to assess and monitor the concentration of pharmaceutical residues in groundwater, surface water, and drinking water. Based on the data obtained, the conventional WWTPs remove 10-60% of pharmaceutical residues. However, most PhACs are eliminated during the secondary or advanced therapy stages, and an overall elimination rate higher than 90% can be achieved. This review also highlights and compares the suitability of currently used treatment technologies and identifies the merits and demerits of each technology to upgrade the system to tackle future challenges. For this reason, pharmaceutical compound rankings in regulatory agencies should be the subject of prospective studies.
    Matched MeSH terms: Drug Resistance, Microbial
  5. Song JH, Lee NY, Ichiyama S, Yoshida R, Hirakata Y, Fu W, et al.
    Clin Infect Dis, 1999 Jun;28(6):1206-11.
    PMID: 10451154
    Antimicrobial susceptibility of 996 isolates of Streptococcus pneumoniae from clinical specimens was investigated in 11 Asian countries from September 1996 to June 1997. Korea had the greatest frequency of nonsusceptible strains to penicillin with 79.7%, followed by Japan (65.3%), Vietnam (60.8%), Thailand (57.9%), Sri Lanka (41.2%), Taiwan (38.7%), Singapore (23.1%), Indonesia (21.0%), China (9.8%), Malaysia (9.0%), and India (3.8%). Serotypes 23F and 19F were the most common. Pulsed-field gel electrophoresis (PFGE) of 154 isolates from Asian countries showed several major PFGE patterns. The serotype 23F Spanish clone shared the same PFGE pattern with strains from Korea, Japan, Singapore, Taiwan, Thailand, and Malaysia. Fingerprinting analysis of pbp1a, pbp2x, and pbp2b genes of 12 strains from six countries also showed identical fingerprints of penicillin-binding protein genes in most strains. These data suggest the possible introduction and spread of international epidemic clones into Asian countries and the increasing problems of pneumococcal drug resistance in Asian countries for the first time.
    Matched MeSH terms: Drug Resistance, Microbial
  6. Appelbaum PC
    Clin Infect Dis, 1992 Jul;15(1):77-83.
    PMID: 1617076
    Clinical resistance to penicillin in Streptococcus pneumoniae was first reported by researchers in Boston in 1965; subsequently, this phenomenon was reported from Australia (1967) and South Africa (1977). Since these early reports, penicillin resistance has been encountered with increasing frequency in strains of S. pneumoniae from around the world. In South Africa strains resistant to penicillin and chloramphenicol as well as multiresistant strains have been isolated. Similar patterns of resistance have been reported from Spain. Preliminary evidence points to a high prevalence of resistant pneumococci in Hungary, other countries of Eastern Europe, and some countries in other areas of Europe, notably France. In the United States most reports of resistant pneumococci come from Alaska and the South, but resistance is increasing in other states and in Canada. Pneumococcal resistance has also been described in Zambia, Japan, Malaysia, Pakistan, Bangladesh, Chile, and Brazil; information from other African, Asian, and South American countries is not available. The rising prevalence of penicillin-resistant pneumococci worldwide mandates selective susceptibility testing and epidemiological investigations during outbreaks.
    Matched MeSH terms: Drug Resistance, Microbial
  7. Riley PA, Parasakthi N, Liam CK
    Clin Infect Dis, 1996 May;22(5):867-8.
    PMID: 8722957
    Matched MeSH terms: Drug Resistance, Microbial
  8. Commun. Dis. Intell., 1998 Dec 24;22(13):288-91.
    PMID: 9893340
    The World Health Organization Western Pacific Region Gonococcal Antimicrobial Surveillance Programme (WHO WPR GASP) is a multicentric long term programme of continuous surveillance of the antibiotic susceptibility of Neisseria gonorrhoeae. In 1997 the programme examined the susceptibility of 8,594 isolates of gonococci to various antimicrobials in 15 focal points. The trend toward increased antimicrobial resistance noted in earlier years continued. The proportion of quinolone resistant gonococci reported from most centres was either maintained or else increased. More than half of the isolates tested in China-Hong Kong, China, Japan, Korea, and the Philippines had altered quinolone susceptibility and increases in the number and percentage of quinolone resistant strains were noted in most, but not all, of the other centres. Resistance to the penicillins was again widespread, and chromosomally mediated resistance was a significant factor. Penicillinase-producing Niesseria gonorrhoeae (PPNG) were present in all centres. All isolates were sensitive to the third generation cephalosporins and only a very few isolates in China were spectinomycin resistant. High level tetracycline resistance was concentrated in a number of centres including Singapore, Malaysia, the Philippines and Vietnam. The proportion of tetracycline resistant Neiserria gonorrhoeae (TRNG) in most of the remaining centres was less than 10 per cent.
    Matched MeSH terms: Drug Resistance, Microbial
  9. Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, et al.
    Crit Rev Biochem Mol Biol, 2018 08;53(4):335-355.
    PMID: 29793351 DOI: 10.1080/10409238.2018.1473330
    Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
    Matched MeSH terms: Drug Resistance, Microbial
  10. Venkateskumar K, Parasuraman S, Chuen LY, Ravichandran V, Balamurgan S
    Curr Drug Discov Technol, 2020;17(4):507-514.
    PMID: 31424372 DOI: 10.2174/1570163816666190819141344
    About 95% of earth living space lies deep below the ocean's surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.
    Matched MeSH terms: Drug Resistance, Microbial/drug effects
  11. Kho CJY, Lau MML, Chung HH, Chew IYY, Gan HM
    Curr Microbiol, 2023 Jun 25;80(8):255.
    PMID: 37356021 DOI: 10.1007/s00284-023-03354-5
    Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.
    Matched MeSH terms: Drug Resistance, Microbial/genetics
  12. Abubakar U, Muhammad HT, Sulaiman SAS, Ramatillah DL, Amir O
    Curr Pharm Teach Learn, 2020 03;12(3):265-273.
    PMID: 32273061 DOI: 10.1016/j.cptl.2019.12.002
    BACKGROUND AND PURPOSE: Training pharmacy students in infectious diseases (ID) is important to enable them to participate in antibiotic stewardship programs. This study evaluated knowledge and self-confidence regarding antibiotic resistance, appropriate antibiotic therapy, and antibiotic stewardship among final year pharmacy undergraduate students.

    METHODS: A cross-sectional electronic survey was conducted at universities in Indonesia, Malaysia, and Pakistan. A 59-item survey was administered between October 2017 and December 2017.

    FINDINGS: The survey was completed by 211 students (response rate 77.8%). The mean knowledge score for antibiotic resistance, appropriate antibiotic therapy, and antibiotic stewardship was 5.6 ± 1.5, 4.7 ± 1.8 (maximum scores 10.0) and 3.1 ± 1.4 (maximum score 5.0), respectively. Significant variations were noted among the schools. There was poor awareness about the consequences of antibiotic resistance and cases with no need for an antibiotic. The knowledge of antibiotic resistance was higher among male respondents (6.1 vs. 5.4) and those who had attended antibiotic resistance (5.7 vs. 5.2) and antibiotic therapy (5.8 vs. 4.9) courses (p 

    Matched MeSH terms: Drug Resistance, Microbial/drug effects*
  13. Chuah LO, Shamila Syuhada AK, Mohamad Suhaimi I, Farah Hanim T, Rusul G
    Data Brief, 2018 Apr;17:698-702.
    PMID: 29511712 DOI: 10.1016/j.dib.2018.01.098
    This article describes the Pulsed-field gel electrophoresis clustering of the predominantSalmonellastrains (Salmonellaser. Albany,Salmonellaser. Brancaster, andSalmonellaser. Corvallis) isolated from poultry and processing environment in wet market and small-scale processing plant in Penang and Perlis, the northern states of Malaysia. Agar disk diffusion assay was performed to determine the phenotypic antibiotic resistance of theseSalmonellastrains. The most common antibiograms among the three predominantSalmonellaserovars were reported. The presence of integrase genes and antibiotic resistance genes conferring to resistance against β-lactams, aminoglycosides, tetracyclines, quinolones, sulphonamides and chloramphenicol, was detected via PCR amplification.
    Matched MeSH terms: Drug Resistance, Microbial
  14. Radua S, Ling OW, Srimontree S, Lulitanond A, Hin WF, Yuherman, et al.
    Diagn Microbiol Infect Dis, 2000 Nov;38(3):141-5.
    PMID: 11109011
    A total of 35 Burkholderia pseudomallei isolates from Thailand (16 clinical and eight soil isolates) and Malaysia (seven animal, two isolate each from clinical and soil) were investigated by their antimicrobial resistance, plasmid profiles and were typed by randomly amplified polymorphic DNA analysis. All isolates were found to be resistant to six or more of the 12 antimicrobial agents tested. Only two small plasmids of 1.8 and 2.4 megadalton were detected in two clinical isolates from Thailand. RAPD analysis with primer GEN2-60-09 resulted in the identification of 35 RAPD-types among the 35 isolates. The constructed dendrogram differentiated the 35 isolates into two main clusters and a single isolate. The wide genetic biodiversity among the 35 isolates indicate that RAPD-PCR can be a useful method to differentiate unrelated B. pseudomallei in epidemiological investigation.
    Matched MeSH terms: Drug Resistance, Microbial
  15. Radu S, Toosa H, Rahim RA, Reezal A, Ahmad M, Hamid AN, et al.
    Diagn Microbiol Infect Dis, 2001 Mar;39(3):145-53.
    PMID: 11337180
    Enterococcus species isolated from poultry sources were characterized for their resistance to antibiotics, plasmid content, presence of van genes and their diversity by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). The results showed that all isolates were multi-resistance to the antibiotics tested. Ampicillin (15/70) followed by chloramphenicol (37/70) were the most active antibiotics tested against the Enterococcus spp. isolates, while the overall resistant rates against the other antibiotics were between 64.3% to 100%. All vancomycin-resistant E. faecalis, E. durans, E. hirae and E. faecium isolates tested by the disk diffusion assay were positive in PCR detection for presence of vanA gene. All E. casseliflavus isolates were positive for vanC2/C3 gene. However, none of the Enterococcus spp. isolates were positive for vanB and vanC1 genes. Plasmids ranging in sizes between 1.1 to ca. 35.8 MDa were detected in 38/70 of the Enterococcus isolates. When the genetic relationship among all isolates of the individual species were tested by RAPD-PCR, genetic differences detected suggested a high genetic polymorphisms of isolates in each individual species. Our results indicates that further epidemiological studies are necessary to elucidate the role of food animals as reservoir of VRE and the public health significance of infections caused by Enterococcus spp.
    Matched MeSH terms: Drug Resistance, Microbial
  16. You KG, Bong CW, Lee CW
    Environ Monit Assess, 2016 Mar;188(3):171.
    PMID: 26884358 DOI: 10.1007/s10661-016-5163-0
    Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia.
    Matched MeSH terms: Drug Resistance, Microbial/genetics*
  17. Siew SW, Musa SM, Sabri N', Farida Asras MF, Ahmad HF
    Environ Res, 2023 Feb 15;219:115139.
    PMID: 36565841 DOI: 10.1016/j.envres.2022.115139
    The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and 
    Matched MeSH terms: Drug Resistance, Microbial/genetics
  18. Ott A, O'Donnell G, Tran NH, Mohd Haniffah MR, Su JQ, Zealand AM, et al.
    Environ Sci Technol, 2021 06 01;55(11):7466-7478.
    PMID: 34000189 DOI: 10.1021/acs.est.1c00939
    Pinpointing environmental antibiotic resistance (AR) hot spots in low-and middle-income countries (LMICs) is hindered by a lack of available and comparable AR monitoring data relevant to such settings. Addressing this problem, we performed a comprehensive spatial and seasonal assessment of water quality and AR conditions in a Malaysian river catchment to identify potential "simple" surrogates that mirror elevated AR. We screened for resistant coliforms, 22 antibiotics, 287 AR genes and integrons, and routine water quality parameters, covering absolute concentrations and mass loadings. To understand relationships, we introduced standardized "effect sizes" (Cohen's D) for AR monitoring to improve comparability of field studies. Overall, water quality generally declined and environmental AR levels increased as one moved down the catchment without major seasonal variations, except total antibiotic concentrations that were higher in the dry season (Cohen's D > 0.8, P < 0.05). Among simple surrogates, dissolved oxygen (DO) most strongly correlated (inversely) with total AR gene concentrations (Spearman's ρ 0.81, P < 0.05). We suspect this results from minimally treated sewage inputs, which also contain AR bacteria and genes, depleting DO in the most impacted reaches. Thus, although DO is not a measure of AR, lower DO levels reflect wastewater inputs, flagging possible AR hot spots. DO measurement is inexpensive, already monitored in many catchments, and exists in many numerical water quality models (e.g., oxygen sag curves). Therefore, we propose combining DO data and prospective modeling to guide local interventions, especially in LMIC rivers with limited data.
    Matched MeSH terms: Drug Resistance, Microbial/genetics
  19. Rohani MY, Raudzah A, Ng AJ, Ng PP, Zaidatul AA, Asmah I, et al.
    Epidemiol Infect, 1999 Feb;122(1):77-82.
    PMID: 10098788
    During a 1-year period from October 1995 to September 1996, 273 isolations of Streptococcus pneumoniae were made from various types of clinical specimens. The majority of the isolates (39.2%) were from sputum whilst 27.5% were from blood, CSF and other body fluids. The organism was isolated from patients of all age groups, 31.1% from children aged 10 years and below, 64.7% of which come from children aged 2 years or below. The majority of the isolates belong to serotypes 1, 6B, 19B, 19F and 23F. Serotypes 1 and 19B were the most common serotypes associated with invasive infection. About 71.9% of the invasive infections were due to serotypes included in the available 23 valent polysaccharide vaccine. The rates of resistance to penicillin and erythromycin were 7.0 and 1.1% respectively. Our findings show that the serotypes of S. pneumoniae causing most invasive infections in Malaysia are similar to those in other parts of the world and the available vaccine may have a useful role in this population.
    Matched MeSH terms: Drug Resistance, Microbial
  20. Radu S, Ho YK, Lihan S, Yuherman, Rusul G, Yasin RM, et al.
    Epidemiol Infect, 1999 Oct;123(2):225-32.
    PMID: 10579441
    A total of 31 strains of Vibrio cholerae O1 (10 from outbreak cases and 7 from surface water) and non-O1 (4 from clinical and 10 from surface water sources) isolated between 1993 and 1997 were examined with respect to presence of cholera enterotoxin (CT) gene by PCR-based assays, resistance to antibiotics, plasmid profiles and random amplified polymorphic DNA (RAPD) analysis. All were resistant to 9 or more of the 17 antibiotics tested. Identical antibiotic resistance patterns of the isolates may indicate that they share a common mode of developing antibiotic resistance. Furthermore, the multiple antibiotic resistance indexing showed that all strains tested originated from high risk contamination. Plasmid profile analysis by agarose gel electrophoresis showed the presence of small plasmids in 12 (7 non-O1 and 5 O1 serotypes) with sizes ranging 1.3-4.6 MDa. The CT gene was detected in all clinical isolates but was present in only 14 (6 O1 serotype and 8 non-O1 serotype) isolates from environmental waters. The genetic relatedness of the clinical and environmental Vibrio cholerae O1 and non-O1 strains was investigated by RAPD fingerprinting with four primers. The four primers generated polymorphisms in all 31 strains of Vibrio cholerae tested, producing bands ranging from < 250 to 4500 bp. The RAPD profiles revealed a wide variability and no correlation with the source of isolation. This study provides evidence that Vibrio cholerae O1 and non-O1 have significant public health implications.
    Matched MeSH terms: Drug Resistance, Microbial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links