Displaying publications 21 - 40 of 75 in total

Abstract:
Sort:
  1. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
    Matched MeSH terms: Electrochemistry
  2. Chan KL, Yuen KH, Jinadasa S, Peh KK, Toh WT
    Planta Med, 1997 Feb;63(1):66-9.
    PMID: 9063097
    A high-performance liquid chromatography assay equipped with a glassy carbon electrode for electrochemical detection (HPLC-ECD) was developed at reductive mode for the analysis of artemisinin, the antimalarial drug from Artemisia annua (Asteraceae) in human plasma. This method was selective, sensitive, and produced satisfactory recovery, precision, and accuracy. Analysis of plasma samples from 8 male volunteers given 10 mg kg-1 of artemisinin orally as an aqueous suspension showed a mean peak plasma concentration (Cmax) of 580.89 ng ml-1 +/- 88.64 SD at 2.5 h +/- 0.5 SD after dosing, and the mean area under the plasma concentration-time curve (AUC0-infinity) was 2227.57 ng h ml-1 +/- 677.22 SD. In addition, the elimination rate constant (Ke), elimination half-life (t1/2), and apparent volume of distribution (Vd) were calculated to be 0.2971 h-1 +/- 0.0644 SD, 2.42 h +/- 0.46 SD, and 16.26 l kg-1 +/- 3.44 SD, respectively.
    Matched MeSH terms: Electrochemistry
  3. Hashim OH, Shuib AS, Chua CT
    Nephron, 2001 Dec;89(4):422-5.
    PMID: 11721160
    We have studied the interaction of the Gal-GalNAc-reactive champedak lectin-C with neuraminidase-treated and untreated IgA1 from IgA nephropathy patients. The binding ability of the lectin to untreated IgA1 from IgA nephropathy patients was significantly lower as compared to the untreated IgA1 from normal controls. This differential lectin-binding capacity was abrogated when the experiment was performed on neuraminidase-treated sera. Treatment of the serum IgA1 with neuraminidase also abrogated the differential charge distribution between the alpha-heavy chains of IgA nephropathy patients and normal controls.
    Matched MeSH terms: Electrochemistry
  4. Lim LL, Fu AWC, Lau ESH, Ozaki R, Cheung KKT, Ma RCW, et al.
    Nephrol Dial Transplant, 2019 Aug 01;34(8):1320-1328.
    PMID: 29939305 DOI: 10.1093/ndt/gfy154
    BACKGROUND: Early detection and risk factor control prevent chronic kidney disease (CKD) progression. Evaluation of peripheral autonomic dysfunction may detect incident cardiovascular-renal events in type 2 diabetes (T2D).

    METHODS: SUDOSCAN, a non-invasive tool, provides an age-adjusted electrochemical skin conductance (ESC) composite score incorporating hands/feet ESC measurements, with a score ≤53 indicating sudomotor dysfunction. A consecutive cohort of 2833 Chinese adults underwent structured diabetes assessment in 2012-13; 2028 participants without preexisting cardiovascular disease (CVD) and CKD were monitored for incident cardiovascular-renal events until 2015.

    RESULTS: In this prospective cohort {mean age 57.0 [standard deviation (SD) 10.0] years; median T2D duration 7.0 [interquartile range (IQR) 3.0-13.0] years; 56.1% men; 72.5% never-smokers; baseline ESC composite score 60.7 (SD 14.5)}, 163 (8.0%) and 25 (1.2%) participants developed incident CKD and CVD, respectively, after 2.3 years of follow-up. The adjusted hazard ratios (aHRs) per 1-unit decrease in the ESC composite score for incident CKD, CVD and all-cause death were 1.02 [95% confidence interval (CI) 1.01-1.04], 1.04 (1.00-1.07) and 1.04 (1.00-1.08), respectively. Compared with participants with an ESC composite score >53, those with a score ≤53 had an aHR of 1.56 (95% CI 1.09-2.23) for CKD and 3.11 (95% CI 1.27-7.62) for CVD, independent of common risk markers. When added to clinical variables (sex and duration of diabetes), the ESC composite score improved discrimination of all outcomes with appropriate reclassification of CKD risk.

    CONCLUSIONS: A low ESC composite score independently predicts incident cardiovascular-renal events and death in T2D, which may improve the screening strategy for early intervention.

    Matched MeSH terms: Electrochemistry
  5. Aziz SB, Abdulwahid RT, Hamsan MH, Brza MA, Abdullah RM, Kadir MFZ, et al.
    Molecules, 2019 Sep 27;24(19).
    PMID: 31569650 DOI: 10.3390/molecules24193508
    In this report, a facile solution casting technique was used to fabricate polymer blend electrolytes of chitosan (CS):poly (ethylene oxide) (PEO):NH4SCN with high electrochemical stability (2.43V). Fourier transform infrared (FTIR) spectroscopy was used to investigate the polymer electrolyte formation. For the electrochemical property analysis, cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) techniques were carried out. Referring to the FTIR spectra, a complex formation between the added salt and CS:PEO was deduced by considering the decreasing and shifting of FTIR bands intensity in terms of functional groups. The CS:PEO:NH4SCN electrolyte was found to be electrochemically stable as the applied voltage linearly swept up to 2.43V. The cyclic voltammogram has presented a wide potential window without showing any sign of redox peaks on the electrode surface. The proved mechanisms of charge storage in these fabricated systems were found to be double layer charging. The EIS analysis showed the existence of bulk resistance, wherein the semicircle diameter decreased with increasing salt concentration. The calculated maximum DC conductivity value was observed to be 2.11 × 10-4 S/cm for CS:PEO incorporated with 40 wt% of NH4SCN salt. The charged species in CS:PEO:NH4SCN electrolytes were considered to be predominantly ionic in nature. This was verified from transference number analysis (TNM), in which ion and electron transference numbers were found to be tion = 0.954 and tel = 0.045, respectively. The results obtained for both ion transference number and DC conductivity implied the possibility of fabricating electrolytes for electrochemical double layer capacitor (EDLC) device application. The specific capacitance of the fabricated EDLC was obtained from the area under the curve of the CV plot.
    Matched MeSH terms: Electrochemistry*
  6. Chung HY, Pan GT, Hong ZY, Hsu CT, Chong S, Yang TC, et al.
    Molecules, 2020 Sep 04;25(18).
    PMID: 32899765 DOI: 10.3390/molecules25184050
    A series of heteroatom-containing porous carbons with high surface area and hierarchical porosity were successfully prepared by hydrothermal, chemical activation, and carbonization processes from soybean residues. The initial concentration of soybean residues has a significant impact on the textural and surface functional properties of the obtained biomass-derived porous carbons (BDPCs). SRAC5 sample with a BET surface area of 1945 m2 g-1 and a wide micro/mesopore size distribution, nitrogen content of 3.8 at %, and oxygen content of 15.8 at % presents the best electrochemical performance, reaching 489 F g-1 at 1 A g-1 in 6 M LiNO3 aqueous solution. A solid-state symmetric supercapacitor (SSC) device delivers a specific capacitance of 123 F g-1 at 1 A g-1 and a high energy density of 68.2 Wh kg-1 at a power density of 1 kW kg-1 with a wide voltage window of 2.0 V and maintains good cycling stability of 89.9% capacitance retention at 2A g-1 (over 5000 cycles). The outstanding electrochemical performances are ascribed to the synergistic effects of the high specific surface area, appropriate pore distribution, favorable heteroatom functional groups, and suitable electrolyte, which facilitates electrical double-layer and pseudocapacitive mechanisms for power and energy storage, respectively.
    Matched MeSH terms: Electrochemistry
  7. Junaid M, Khir MHM, Witjaksono G, Tansu N, Saheed MSM, Kumar P, et al.
    Molecules, 2020 Aug 11;25(16).
    PMID: 32796504 DOI: 10.3390/molecules25163646
    Graphene and its hybrids are being employed as potential materials in light-sensing devices due to their high optical and electronic properties. However, the absence of a bandgap in graphene limits the realization of devices with high performance. In this work, a boron-doped reduced graphene oxide (B-rGO) is proposed to overcome the above problems. Boron doping enhances the conductivity of graphene oxide and creates several defect sites during the reduction process, which can play a vital role in achieving high-sensing performance of light-sensing devices. Initially, the B-rGO is synthesized using a modified microwave-assisted hydrothermal method and later analyzed using standard FESEM, FTIR, XPS, Raman, and XRD techniques. The content of boron in doped rGO was found to be 6.51 at.%. The B-rGO showed a tunable optical bandgap from 2.91 to 3.05 eV in the visible spectrum with an electrical conductivity of 0.816 S/cm. The optical constants obtained from UV-Vis absorption spectra suggested an enhanced surface plasmon resonance (SPR) response for B-rGO in the theoretical study, which was further verified by experimental investigations. The B-rGO with tunable bandgap and enhanced SPR could open up the solution for future high-performance optoelectronic and sensing applications.
    Matched MeSH terms: Electrochemistry/methods*
  8. Junaid M, Md Khir MH, Witjaksono G, Ullah Z, Tansu N, Saheed MSM, et al.
    Molecules, 2020 Sep 14;25(18).
    PMID: 32937975 DOI: 10.3390/molecules25184217
    In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.
    Matched MeSH terms: Electrochemistry
  9. Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, Akhavan-Farid A, Ismail AF, Aziz M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:53-65.
    PMID: 31147024 DOI: 10.1016/j.msec.2019.04.010
    Recently, porous magnesium and its alloys are receiving great consideration as biocompatible and biodegradable scaffolds for bone tissue engineering application. However, they presented poor antibacterial performance and corrosion resistance which limited their clinical applications. In this study, Mg-Zn (MZ) scaffold containing different concentrations of tetracycline (MZ-xTC, x = 1, 5 and 10%) were fabricated by space holder technique to meet the desirable antibacterial activity and corrosion resistance properties. The MZ-TC contains total porosity of 63-65% with pore sizes in the range of 600-800 μm in order to accommodate bone cells. The MZ scaffold presented higher compressive strength and corrosion resistance compared to pure Mg scaffold. However, tetracycline incorporation has less significant effect on the mechanical and corrosion properties of the scaffolds. Moreover, MZ-xTC scaffolds drug release profiles show an initial immediate release which is followed by more stable release patterns. The bioactivity test reveals that the MZ-xTC scaffolds are capable of developing the formation of HA layers in simulated body fluid (SBF). Next, Staphylococcus aureus and Escherichia coli bacteria were utilized to assess the antimicrobial activity of the MZ-xTC scaffolds. The findings indicate that those scaffolds that incorporate a high level concentration of tetracycline are tougher against bacterial organization than MZ scaffolds. However, the MTT assay demonstrates that the MZ scaffolds containing 1 to 5% tetracycline are more effective to sustain cell viability, whereas MZ-10TC shows some toxicity. The alkaline phosphatase (ALP) activity of the MZ-(1-5)TC was considerably higher than that of MZ-10TC on the 3 and 7 days, implying higher osteoblastic differentiation. All the findings suggest that the MZ-xTC scaffolds containing 1 to 5% tetracycline is a promising candidate for bone tissue healing due to excellent antibacterial activity and biocompatibility.
    Matched MeSH terms: Electrochemistry
  10. Nordin N, Yusof NA, Radu S, Hushiarian R
    J Vis Exp, 2018 06 03.
    PMID: 29912194 DOI: 10.3791/56585
    Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm2). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.
    Matched MeSH terms: Electrochemistry/methods*
  11. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Electrochemistry
  12. Kafi AKM, Yam CCL, Azmi NS, Yusoff MM
    J Nanosci Nanotechnol, 2018 Apr 01;18(4):2422-2428.
    PMID: 29442911 DOI: 10.1166/jnn.2018.14327
    In this work, the direct electrochemistry of hemoglobin (Hb), which was immobilized on carbonyl functionalized single walled carbon nanotube (SWCNT) and deposited onto a gold (Au) electrode has been described. The synthesis of the network of crosslinked SWCNT/Hb was done with the help of crosslinking agent EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide). The UV-Vis and FTIR spectroscopy of SWCNT/Hb networks showed that Hb maintained its natural structure and kept good stability. In addition with this, scanning electron microscopy (SEM) illustrated that SWCNT/Hb networks had a featured layered structure and Hb being strongly liked with SWCNT surface. Cyclic voltammetry (CV) was used to study and to optimize the performance of the resulting modified electrode. The cyclic voltammetric (CV) responses of SWCNT/Hb networks in pH 7.0 exhibit prominent redox couple for the FeIII/II redox process with a midpoint potential of -0.46 V and -0.34, cathodic and anodic respectively. Furthermore, SWCNT/Hb networks are utilized for the detection of hydrogen peroxide (H2O2). Electrochemical measurements reveal that the resulting SWCNT/Hb electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, and low detection limit. Overall, the electrochemical results are due to excellent biocompatibility and excellent electron transport efficiency of CNT as well as high Hb loading and synergistic catalytic effect of the modified electrode toward H2O2.
    Matched MeSH terms: Electrochemistry*
  13. Beishenaliev A, Lim SS, Tshai KY, Khiew PS, Moh'd Sghayyar HN, Loh HS
    J Mater Sci Mater Med, 2019 May 24;30(6):62.
    PMID: 31127374 DOI: 10.1007/s10856-019-6264-4
    This study aimed to explore a potential use of fish scale-derived gelatin nanofibrous scaffolds (GNS) in tissue engineering due to their biological and economical merits. Extraction of gelatin was achieved via decalcification, sonication and lyophilization of mixed fish scales. To fabricate nano-scale architecture of scaffolds analogous to natural extracellular matrix, gelatin was rendered into nanofibrous matrices through 6-h electrospinning, resulting in the average diameter of 48 ± 12 nm. In order to improve the water-resistant ability while retaining their biocompatibility, GNS were physically crosslinked with ultraviolet (UV) irradiation for 5 min (UGN5), 10 min (UGN10) and 20 min (UGN20). On average, the diameter of nanofibers increased by 3 folds after crosslinking, however, Fourier transform infrared spectroscopy analysis confirmed that no major alterations occurred in the functional groups of gelatin. A degradation assay showed that UGN5 and UGN10 scaffolds remained in minimum essential medium for 14 days, while UGN20 scaffolds degraded completely after 10 days. All UGN scaffolds promoted adhesion and proliferation of human keratinocytes, HaCaT, without causing an apparent cytotoxicity. UGN5 scaffolds were shown to stimulate a better growth of HaCaT cells compared to other scaffolds upon 1 day of incubation, whereas UGN20 had a long-term effect on cells exhibiting 25% higher cell proliferation than positive control after 7 days. In the wound scratch assay, UGN5 scaffolds induced a rapid cell migration closing up to 79% of an artificial wound within 24 h. The current findings provide a new insight of UGN scaffolds to serve as wound dressings in the future. In the wound scratch assay, UGN5 induced a rapid cell migration closing up to 79% of an artificial wound within 24 h.
    Matched MeSH terms: Electrochemistry
  14. Poonkuzhali K, Rajeswari V, Saravanakumar T, Viswanathamurthi P, Park SM, Govarthanan M, et al.
    J Hazard Mater, 2014 May 15;272:89-95.
    PMID: 24681590 DOI: 10.1016/j.jhazmat.2014.03.001
    The effluent discharge treatment for controlling the environment from non biodegradable metal contaminants using plant extract is an efficient technique. The reduction of hexavalent chromium by abundantly available weed, Aerva lanata L. was investigated using batch equilibrium technique. The variables studied were Cr(VI) concentration, Aerva lanata L. dose, contact time, pH, temperature and agitation speed. Cyclic voltammetry and ICP-MS analysis confirmed the reduction of Cr(VI) to Cr(III). Electrochemical analysis proved that, the chromium has not been degraded and the valency of the chromium has only been changed. ICP-MS analysis shows that 100ng/L of hexavalent chromium was reduced to 97.01ng/L trivalent chromium. These results suggest that components present in the Aerva lanata L. are responsible for the reduction of Cr(VI) to Cr(III). The prime components ferulic acid, kaempherol and β-carboline present in the Aerva lanata L. may be responsible for the reduction of Cr(VI) as evident from LC-MS analysis.
    Matched MeSH terms: Electrochemistry
  15. Mohammad M, Maitra S, Ahmad N, Bustam A, Sen TK, Dutta BK
    J Hazard Mater, 2010 Jul 15;179(1-3):363-72.
    PMID: 20362390 DOI: 10.1016/j.jhazmat.2010.03.014
    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.
    Matched MeSH terms: Electrochemistry
  16. Jalil AA, Triwahyono S, Razali NA, Hairom NH, Idris A, Muhid MN, et al.
    J Hazard Mater, 2010 Feb 15;174(1-3):581-5.
    PMID: 19864065 DOI: 10.1016/j.jhazmat.2009.09.091
    Electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators such as naphthalene, biphenyl, phenanthrene, anthracene, and pyrene, was studied. The amount of mediator required was able to be reduced to 0.01 equiv. for all mediators except for anthracene, with the complete dechlorination of mono-, 1,3-di- and 1,2,4-trichlorobenzene still achieved. This catalytic amount of mediator plays an important role in accelerating the dechlorination through the rapid formation of radical anions prior to reduction of the chlorobenzenes.
    Matched MeSH terms: Electrochemistry/methods*
  17. Foo KY, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):552-9.
    PMID: 19501461 DOI: 10.1016/j.jhazmat.2009.05.057
    Stepping into the new globalizes and paradigm shifted era, a huge revolution has been undergone by the electrochemical industry. From a humble candidate of the superconductor resources, today electrosorption has demonstrated its wide variety of usefulness, almost in every part of the environmental conservation. With the renaissance of activated carbon (AC), there has been a steadily growing interest in this research field. The paper presents a state of art review of electrosorption technology, its background studies, fundamental chemistry and working principles. Moreover, recent development of the activated carbon assisted electrosorption process, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of electrosorption in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
    Matched MeSH terms: Electrochemistry*
  18. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2007 Jul 19;146(1-2):73-80.
    PMID: 17196740
    Mixed dye consists of six commercial dyes and textile effluents from cotton dyeing process were treated by electrochemical-assisted photodegradation under halogen lamp illumination. Two types of effluents were collected which are samples before and after undergone pre-treatment at the factory wastewater treatment plant. The photodegradation process was studied by evaluating the changes in concentration employing UV-vis spectrophotometer (UV-vis) and total organic carbon (TOC) analysis. The photoelectrochemical degradation of mixed dye was found to follow the Langmuir Hinshelwood pseudo-first order kinetic while pseudo-second order kinetic model for effluents by using TOC analyses. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values of mixed dye and raw effluents were reported. Photoelectrochemical characteristic of pollutants was studied using the cyclic voltammetry technique. Raw effluent was found to exhibit stronger reduction behaviour at cathodic bias potential but slightly less photoresponse at anodic bias than mixed dye.
    Matched MeSH terms: Electrochemistry
  19. Jalil AA, Panjang NF, Akhbar S, Sundang M, Tajuddin N, Triwahyono S
    J Hazard Mater, 2007 Sep 5;148(1-2):1-5.
    PMID: 17669589
    Electrochemical dechlorination of chlorobenzene in organic solutions was studied. Electrolysis of chlorobenzene in acetonitrile solution in a one-compartment cell fitted with a platinum cathode and a zinc anode at 60mA/cm(2) and 0 degrees C was found to be the optimum conditions, which gave complete dechlorination of chlorobenzene. However, similar result could not be achieved when applying these conditions to 1,3-dichlorobenzene and 1,2,4-trichlorobenzene. We found that the use of naphthalene which reacted as a mediator in the appropriate system could accelerate the reduction and gave complete dechlorination of those chlorobenzenes. Moreover, in the presence of naphthalene the reaction time could be shortened by half compared to dechlorination in the absence of naphthalene.
    Matched MeSH terms: Electrochemistry/methods*
  20. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2005 Feb 14;118(1-3):197-203.
    PMID: 15721544
    Electrochemical-assisted photodegradation of methyl orange has been investigated using TiO2 thin films. The films were prepared by sol-gel dip-coating method. Several operational parameters to achieve optimum efficiency of this electrochemical-assisted photodegradation system have been tested. Photoelectrochemical degradation was studied using different light sources and light intensity. The light sources chosen ranged from ultraviolet to visible light. The effect of agitation of the solution at different speeds has also been studied. Slight improvement of photodegradation rate was observed by applying higher agitation speed. Investigation on the electrode after repeated usages show the electrode can be reused up to 20 times with percentage of deficiency less than 15%. The study on the effect of solution temperature indicated that the activation energy of the methyl orange degradation is 18.63 kJ mol(-1).
    Matched MeSH terms: Electrochemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links