Displaying publications 21 - 40 of 112 in total

Abstract:
Sort:
  1. Nasim W, Belhouchette H, Tariq M, Fahad S, Hammad HM, Mubeen M, et al.
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3658-70.
    PMID: 26498803 DOI: 10.1007/s11356-015-5613-1
    Nitrogen (N) fertilizer is an important yield limiting factor for sunflower production. The correlation between yield components and growth parameters of three sunflower hybrids (Hysun-33, Hysun-38, Pioneer-64A93) were studied with five N rates (0, 60, 120, 180, 240 kg ha(-1)) at three different experimental sites during the two consecutive growing seasons 2008 and 2009. The results revealed that total dry matter (TDM) production and grain yield were positively and linearly associated with leaf area index (LAI), leaf area duration (LAD), and crop growth rate (CGR) at all three sites of the experiments. The significant association of yield with growth components indicated that the humid climate was most suitable for sunflower production. Furthermore, the association of these components can be successfully used to predict the grain yield under diverse climatic conditions. The application of N at increased rate of 180 kg ha(-1) resulted in maximum yield as compared to standard rate (120 kg ha(-1)) at all the experimental sites. In this way, N application rate was significantly correlated with growth and development of sunflower under a variety of climatic conditions. Keeping in view such relationship, the N dose can be optimized for sunflower crop in a particular region to maximize the productivity. Multilocation trails help to predict the input rates precisely while taking climatic variations into account also. In the long run, results of this study provides basis for sustainable sunflower production under changing climate.
    Matched MeSH terms: Fertilizers/analysis*
  2. Shak KP, Wu TY, Lim SL, Lee CA
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1349-59.
    PMID: 23900949 DOI: 10.1007/s11356-013-1995-0
    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio.
    Matched MeSH terms: Fertilizers*
  3. Sow AY, Ismail A, Zulkifli SZ
    Environ Sci Pollut Res Int, 2013 Dec;20(12):8964-73.
    PMID: 23757028 DOI: 10.1007/s11356-013-1857-9
    The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.
    Matched MeSH terms: Fertilizers
  4. Adnan N, Nordin SM, Rasli AM
    Environ Sci Pollut Res Int, 2019 Sep;26(26):27198-27224.
    PMID: 31321721 DOI: 10.1007/s11356-019-05650-9
    One of the innovations introduced toward tackling the heightening of environmental impact is green technology. In the agricultural industry, the implementation of green fertilizer technology (GFT) for the modern development of environmentally friendly technology is a necessity. Within the Malaysian agriculture sector, the GFT application is needed to increase production levels among all crops. One of the essential commodities of all crops has always been paddy, given its status as the staple food among the country's population. Paddy production with the adoption of GFT potentially opens the path toward sustainable development in the industry as well as it also provides the food safety aspect. Moreover, this helps farmers to improve their productivity on paddy production in Malaysia. This paper attempts to evaluate the contributing socio-psychological factors, innovation attributes of environmental factors, and channels of communication to decision-making among farmers in Malaysia on GFT. Furthermore, this research also aims to assess the moderating role of cost between the farmer's behavioral intention and the adoption of GFT. The sampling process followed the stratified sampling technique-overall, 600 survey questionnaires were dispersed and 437 effective responses were received. The structural analysis results obtained have revealed significant positive effect for perceived awareness, attitude, group norm, perceived behavioral control, environmental concern, agro-environmental regulations, relative advantage, compatibility, trialability, and observability, and on farmer's behavioral intention, a significant effect for paddy farmer's behavioral intention in order to adopt of GFT. Further, the interaction effects of cost on the link between farmer's behavioral intention and adoption of GFT are statistically significant. Though, the finding could not back an outcome for the subjective norm, complexity, and mass media on farmer's behavioral intention. Finally, critical outcomes obtained in this research contribute to deepening the thoughtfulness of paddy farmers' adoption of GFT. This study concludes with policy recommendations and future directions of the research.
    Matched MeSH terms: Fertilizers/analysis*
  5. Bhaskar KA, Al-Hashimi A, Meena M, Meena VS, Langyan S, Shrivastava M, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(7):9792-9804.
    PMID: 34508308 DOI: 10.1007/s11356-021-16370-4
    A large amount of ammonia volatilization from the agricultural system causes environmental problems and increases production costs. Conservation agriculture has emerged as an alternate and sustainable crop production system. Therefore, in the present study, ammonia losses from different agricultural practices were evaluated for the wheat crop under different tillage practices. The results of the present study showed that the cumulative emission of ammonia flux from the wheat field varied from 6.23 to 24.00 kg ha-1 (P ≤ 0.05) in conservation tillage (CA) and 7.03 to 26.58 kg ha-1 (P ≤ 0.05) in conventional tillage (CT) among different treatments. Application of basal 80% nitrogen resulted in the highest ammonia flux in conventional and conservation tillage practices. The ammonia volatilization followed the following trend: urea super granules with band placement > neem-coated urea with band placement > neem-coated urea with broadcast before irrigation > neem-coated urea with broadcast after irrigation > slow-release N fertilizer (urea stabilized with DCD and N(n-butyl)thiophosphoric triamide) with band placement. The conservation agricultural practices involving conservation tillage appear to be a sustainable approach for minimizing ammonia volatilization and improving wheat productivity.
    Matched MeSH terms: Fertilizers/analysis
  6. Vejan P, Abdullah R, Ahmad N, Khadiran T
    Environ Sci Pollut Res Int, 2023 Mar;30(13):38738-38750.
    PMID: 36585594 DOI: 10.1007/s11356-022-24970-x
    The oil palm kernel shell biochar (OPKS-B) and oil palm kernel shell activated carbon (OPKS-AC) were used as a framework to entrap urea using adsorption method. Batch adsorption studies were performed to gauge the influence of contact time on the adsorption of urea onto both OPKS-B and OPKS-AC. To evaluate the physicochemical traits of the studied materials, energy dispersive X-ray spectrometer (EDS), N2-sorption, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), elemental analysis, differential thermal gravity (TG/DTG) and thermal gravity were applied. Result shows OPKS-AC has a better sorption capacity for urea compared to OPKS-B. The Langmuir isotherm model better justified the sorption isotherms of urea. For the adsorption process for both OPKS-B and OPKS-AC, the pseudo-second-order kinetic model was picked as it best fitted the experimental sorption outcome with the superior R2 values of > 65.1% and > 74.5%, respectively. The outcome of the experiments showcased that the maximum monolayer adsorption capacity of the OPKS-AC towards urea was 239.68 mg/g. OPKS-AC has showed promising attributes to be picked as an organic framework in the production of controlled release urea fertiliser for a greener and environmentally friendly agricultural practices.
    Matched MeSH terms: Fertilizers
  7. Ketabchi MR, Masoudi Soltani S, Chan A
    Environ Sci Pollut Res Int, 2023 Sep;30(41):93722-93730.
    PMID: 37515618 DOI: 10.1007/s11356-023-28892-0
    The bio- and thermal degradation as well as the water absorption properties of a novel biocomposite comprising cellulose nanoparticles, natural rubber and polylactic acid have been investigated. The biodegradation process was studied through an assembled condition based on the soil collected from the central Malaysian palm oil forests located in the University of Nottingham Malaysia. The effects of the presence of the cellulose nanoparticles and natural rubber on the biodegradation of polylactic acid were investigated. The biodegradation process was studied via thermal gravimetric analysis and scanning electron microscopy. It was understood that the reinforcement of polylactic acid with cellulose nanoparticles and natural rubber increases the thermal stability by ~ 20 °C. Limited amorphous regions on the surface of the cellulose nanoparticles accelerated the biodegradation and water absorption processes. Based on the obtained results, it is predicted that complete biodegradation of the synthesised biocomposites can take place in 3062 h, highlighting promising agricultural applications for this biocomposite.
    Matched MeSH terms: Fertilizers*
  8. Chai EW, H'ng PS, Peng SH, Wan-Azha WM, Chin KL, Chow MJ, et al.
    Environ Technol, 2013 Sep-Oct;34(17-20):2859-66.
    PMID: 24527651
    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.
    Matched MeSH terms: Fertilizers/analysis
  9. Abu Bakar, B., Abdul Rahman, M.S., Teoh, C.C., Abdullah, M.Z.K., Ismail, R.
    Food Research, 2018;2(2):177-182.
    MyJurnal
    Rice plant population density is a key indicator in determining the crop setting and fertilizer application rate. It is therefore essential that the population density is monitored to ensure that a correct crop management decision is taken. The conventional method of determining plant population is by manually counting the total number of rice plant tillers in a 25 cm x 25 cm square frame. Sampling is done by randomly choosing several different locations within a plot to perform tiller counting. This sampling method is time consuming, labour intensive and costly. An alternative fast estimating method was developed to overcome this issue. The method relies on measuring the outer circumference
    or ambit of the contained rice plants in a 25 cm x 25 cm square frame to determine the number of tillers within that square frame. Data samples of rice variety MR219 were collected from rice plots in the Muda granary area, Sungai Limau Dalam, Kedah. The data were taken at 50 days and 70 days after seeding (DAS). A total of 100 data samples were collected for each sampling day. A good correlation was obtained for the variety of 50 DAS and 70 DAS. The model was then verified by taking 100 samples with the latching strap for 50 DAS and 70 DAS. As a result, this technique can be used as a fast, economical and practical alternative to manual tiller counting. The technique can potentially be used in the development of an electronic sensing system to estimate paddy plant population density.
    Matched MeSH terms: Fertilizers
  10. Khor, G.L.
    MyJurnal
    Food and fuel prices have soared in recent years affecting most adversely the poor and those with fixed incomes. Since 2000, wheat price in the international market has more than tripled and maize prices have more than doubled. The price of rice, the staple of billions in Asia, has tripled in the past year. The surge of food prices has been blamed on multiple factors including higher energy and fertilizer costs, greater global demand, drought, the loss of arable land to biofuel crops and price speculation. In light of the spiraling rise in food prices, there is the prospect of increasing rates of under-nutrition worldwide. As it is, 800 million are estimated to be suffering from chronic malnourishment, with another 2.1 billion people living close to subsistence levels on less than US$2 a day. Some perspectives of the food production experience of Malaysia are shared here as a case of a country that has built up capabilities and resources through high level of foreign and domestic investment leading to a diversified economy. In response to the recent surge in the price of rice, the Malaysian government announced the setting up of a dedicated fund amounting to US$1.25 billion to increase production of food including fruits and vegetables, and targeting 100% self-sufficiency in rice, by growing rice on a massive scale in Sarawak. During the current five-year development plan for the period of 2006-2010, (Ninth Malaysia Plan), the role of the agriculture sector is considerably enhanced to be the third pillar of economic growth, after manufacturing and services. Among the measures taken, are those aimed at increasing incomes of smallholders and fishermen mainly through improving productivity. These measures include encouraging more rice farmers to participate in mini-estates and group farming, providing financial assistance to rehabilitate cocoa, pepper and sago smallholdings, enhancing the capabilities of coastal fishermen, and setting up of a special program to assist poor households in the agriculture sector to diversify their sources of income. The various socio-economic programs in Malaysia that have been put in place over the years may have cushioned to some extent so far the severity of the dramatic hikes in food prices.
    Matched MeSH terms: Fertilizers
  11. Kedung Fletcher, Anding Nyuak, Tan Phei Yee
    MyJurnal
    There is lacking technology application in black pepper farming to automate daily routine activities in monitoring black pepper vines growth and nutrient need. With the revolution of Industry 4.0 (IR4.0), and tremendous improvement in the internet of things (IoT), the application of precision agriculture to pepper farming is a thing to consider for its benefit. This paper to explore the use of IoT to monitor fertilizer requirement for pepper vines using pH sensor. The pH sensor attached to Raspberry Pi 3 will be collecting the data and forwarding it to the cloud database for farmer reference and take decision based on data presented in form of a digital report from the database. The Python environment provides the space for coding in Raspberry Pi. SQL and PHP software is used to design the user interface and data management in the relational database management system. The information about pH provides a better understanding of how pH parameter affects the growth of pepper vines. The farmer will be able to access the information anywhere and anytime. Therefore, our proposed system will greatly help the pepper farmers in Sarawak in managing the usage of fertilizer as a way to minimize farm inputs, thus increase their profit.
    Matched MeSH terms: Fertilizers
  12. Abdullah R, Ishak CF, Kadir WR, Bakar RA
    Int J Environ Res Public Health, 2015 Aug;12(8):9314-29.
    PMID: 26262636 DOI: 10.3390/ijerph120809314
    The disposal of industrial paper mill sludge waste is a big issue and has a great importance all over the world. A study was conducted to determine the chemical properties of recycled paper mill sludge (RPMS) and assess its possibilities for land application. RPMS samples were collected from six different paper mills in Malaysia and analyzed for physical and chemical properties, heavy metals, polycyclic aromatic hydrocarbons, (13)C-NMR spectra and for the presence of dioxins/furans. The RPMS was dewatered, sticky with a strong odour, an average moisture of 65.08%, pH 7.09, cation exchange capacity (CEC) 14.43 cmol (+) kg(-1), N 1.45, P 0.18, K 0.12, Ca 0.82, Mg 0.73, Na 0.76 and Al, 1.38%. The polycyclic aromatic hydrocarbons (PAHs) and heavy metals levels were below the standard Class 2 limits. The dioxin and furan were in below the standard concentration of Class 1. The most prominent peak in the (13)C-NMR spectra of RPMS was centered at 31 ppm, proving the presence of methylene (-CH2) groups in long aliphatic chains, with lipids and proteins. The signal at 89 ppm and highly shielded shoulder at 83 ppm were due to presence of cellulose carbon C-4, and the peak at 63 and 65 ppm was due to the cellulose carbon spectrum. The RPMS therefore contains significant amount of nutrients with safe levels of heavy metals and PAHs for environment and can be used as a fertilizer and soil amendment for land application.
    Matched MeSH terms: Fertilizers/analysis*
  13. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2012;13(1):393-408.
    PMID: 22312260 DOI: 10.3390/ijms13010393
    A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use.
    Matched MeSH terms: Fertilizers
  14. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2011;12(8):5238-54.
    PMID: 21954355 DOI: 10.3390/ijms12085238
    A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants.
    Matched MeSH terms: Fertilizers*
  15. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Int J Mol Sci, 2012;13(11):15321-42.
    PMID: 23203128 DOI: 10.3390/ijms131115321
    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (g(s)), intercellular CO(2) (C(i)), apparent quantum yield (ξ) and lower dark respiration rates (R(d)), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
    Matched MeSH terms: Fertilizers*
  16. Rashid MI, Athar M, Noor F, Hussain A
    Int J Occup Saf Ergon, 2023 Dec;29(4):1440-1450.
    PMID: 36221985 DOI: 10.1080/10803548.2022.2135282
    Objectives. This article describes the reduction of unsafe behaviors observed at a fertilizer complex by implementation of a behavior-based safety (BBS) program via a behavior observation form developed by a multidisciplinary team. Methods. Six observation categories, i.e., position of people, reaction of people, personal protective equipment (PPE), tools used, operating procedures and housekeeping, are used to monitor safe and unsafe behaviors for a period of 18 months. Results. Safe behaviors increased from 57 to 70% and unsafe behaviors reduced from 40 to 26%. Behaviors of employees working in various sections of fertilizer complex such as ammonia, urea, utility, bagging/shipping and workshop were also observed. Non-compliance with PPE, housekeeping and standard operating procedures was also monitored in individual sections. Non-operational areas including the administration block, housing colony, maintenance workshop, warehouse, fire station and electrical substation were also observed. Among these, the maximum unsafe behaviors are for the housing colony and minimum for the electrical substation. Conclusion. It has been concluded that working on the housing colony, administration block and fire station areas will address 74% unsafe behaviors of non-operational areas. For practical applications, worldwide industries can implement this BBS program to enhance BBS, thus reducing unsafe behaviors and increasing employee morale.
    Matched MeSH terms: Fertilizers
  17. Nur Hasyimah Ramli, Zuhrah Aini Sulaiman
    MyJurnal
    Fertilizers are the most important and complex nutrients for crop plants in particular for grain yield and quality. The composition of the fertilizer as well as the essential elements that influence the growth of the crop need to be clearly identified. Due to that, this study was carried out to investigate the effect of different fertilizer formulation on the leaf mustard (Brassica juncea) growth. High nitrogen, phosphorus and potassium fertilizers were used to investigate their effects on the morphometric size of the leaves, plant height and the leaf area index of the leaf mustard. Results showed that the application of different formulation of fertilizer improves the growth of leaf mustard compared to control. Leaf mustard with the high phosphorus treatment recorded an increase in plant height and the leaf area index (LAI). Lamina length (LL) range is shown between phosphorus and control (1.11 cm), while the range of lamina width (LW), left width (WL) and right width (WR) are between potassium and control about
    0.57 cm, 0.28 cm and 0.28 cm, respectively. Overall, there is a significant difference between the leaf mustard leaves in different high element fertilizers compared with all of the variable, F(15,1024) = 29.26, p0.05, no significant difference). The highest mean in LAI was obtained when treated with a high phosphorus fertilizer (0.47 m2). The mean difference of LAI of high phosphorus compared to high potassium, high nitrogen and control is 0.02 m2, 0.08 m2 and 0.12 m2. There is no significant differences between the LAI in different high element fertilizers with F(3,176) = 0.15; p>0.05. Further study should be conducted to determine the effects of different fertilizers on the growth of other vegetables and fruit quality.
    Matched MeSH terms: Fertilizers
  18. Mohd Nazry Salleh, Farizul Hafiz Kasim, Khairul Nizar Ismail, Che Mohd Ruzaidi Ghazali, Kamarudin Hussin, Saiful Azhar Saad, et al.
    MyJurnal
    Batu Reput’ is primary sediment mineral and abundantly found in Perlis. Perlis is one of the major producers of ‘Batu Reput’ in Malaysia that content large deposit of high-purity dolomite [CaMg (CO3)2]. Pure samples of ‘Batu Reput’ recently explored in the Koperasi Rimba Mas Padang Besar Quarry were investigated for their physical, chemical and mineralogical composition. SEM and XRD analysis methods were applied. The potential of ‘Batu Reput’ as a raw material in fertilizer production was investigated in this paper.
    Matched MeSH terms: Fertilizers
  19. Nazaratul Ashifa Abdullah Salim, Md Suhaimi Elias, Abdul Khalik Wood, Ezwiza Sanuri, Mohd Suhaimi Hamzah, Shamsiah Abd. Rahman
    MyJurnal
    Over 114 countries in the world grow rice and more than 50 countries have an annual rice production of 100,000 tonnes or more. Asian farmers produce about 90% of the global total rice production. Generally, there are two most common varieties of rice; cultivated and hill rice. Nowadays a lot of agriculture land is contaminated with toxic elements owing to the use of sludge or municipal compost, pesticides, fertilizers and emissions from municipal waste incinerators, car exhausts, residues from metalliferous mines, and smelting industries. The distribution and concentration of several toxic elements in grains particularly rice has lately become a big concern. A study to determine the concentrations of some elements in a few varieties of rice in our local market using Instrumental Neutron Activation Analysis has been performed by Waste and Environmental Technology Division, Malaysian Nuclear Agency. A total of 15 elements were measured. The method was validated by analysing the Standard Reference Material SRM-1568a (Rice Flour) and SRM-1573a (Tomato Leaves) of NIST. The measured concentrations of major and minor elements were analysed in terms of the average intake of nutrient content and comparison of several toxic elements to other studied values.
    Matched MeSH terms: Fertilizers
  20. Lim SL, Wu TY
    J Agric Food Chem, 2016 Mar 2;64(8):1761-9.
    PMID: 26844586 DOI: 10.1021/acs.jafc.6b00531
    The valorization process involves transforming low-value materials such as wastes into high-value-added products. The current study aims to determine the potential of using a valorization process such as vermicomposting technology to convert palm oil mill byproduct, namely, decanter cake (DC), into organic fertilizer or vermicompost. The maturity of the vermicompost was characterized through various chemical and instrumental characterization to ensure the end product was safe and beneficial for agricultural application. The vermicomposting of DC showed significantly higher nutrient recovery and decreases in C:N ratio in comparison with the controls, particularly in the treatment with 2 parts DC and 1 part rice straw (w/w) (2DC:1RS). 2DC:1RS vermicompost had a final C:N ratio of 9.03 ± 0.12 and reasonably high levels of calcium (1.13 ± 0.05 g/kg), potassium (25.47 ± 0.32 g/kg), magnesium (4.87 ± 0.19 g/kg), sodium (7.40 ± 0.03 g/kg), and phosphorus (3.62 ± 0.27 g/kg). In addition, instrumental characterization also revealed a higher degree of maturity in the vermicompost. Ratios of 2921:1633 and DTG2:DTG3 also showed significant linear correlations with the C:N ratio, implying that those ratios could be used to characterize the progression of vermicompost maturity during the valorization process of DC.
    Matched MeSH terms: Fertilizers/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links