Displaying publications 21 - 40 of 139 in total

Abstract:
Sort:
  1. Rini Asnida Abdullah, Takashi Tsutsumi
    Sains Malaysiana, 2018;47:683-689.
    The tensile strength of intact rock materials has been determined by indirect method more frequent than the direct method.
    The most commonly used indirect method is Brazilian test. Stress and deformability undergo during the test reflected by
    geometry shape of the samples with respect to the different diameter ratio. This study focuses on influence of geometry
    shape in solid and ring disk with different diameter ratio on the stress distribution and deformations within sandstone
    subjected to indirect tensile loading by Brazilian test. Then, the finite element method in RS2 software was utilised to
    simulate and gain in depth understanding the behaviour of Brazilian test. The analysis shown that the maximum tensile
    strength in a ring disk with diameter ratio of 0.1 is three times higher than in solid disk. Meanwhile, as the diameter
    ratio of ring disk increases, it produces lower tensile strength. The numerical simulation also has successfully illustrated
    the shear failure which observed near the loading platen of solid disk during Brazilian test. The finite element analysis
    utilised in this research has successfully enables the stress distribution and deformation behaviour of the rock under
    tension to be studied closely
    Matched MeSH terms: Finite Element Analysis
  2. Ridzwan MIZ, Sukjamsri C, Pal B, van Arkel RJ, Bell A, Khanna M, et al.
    J Orthop Res, 2018 03;36(3):993-1001.
    PMID: 28762563 DOI: 10.1002/jor.23669
    Proximal femoral fractures can be categorized into two main types: Neck and intertrochanteric fractures accounting for 53% and 43% of all proximal femoral fractures, respectively. The possibility to predict the type of fracture a specific patient is predisposed to would allow drug and exercise therapies, hip protector design, and prophylactic surgery to be better targeted for this patient rendering fracture preventing strategies more effective. This study hypothesized that the type of fracture is closely related to the patient-specific femoral structure and predictable by finite element (FE) methods. Fourteen femora were DXA scanned, CT scanned, and mechanically tested to fracture. FE-predicted fracture patterns were compared to experimentally observed fracture patterns. Measurements of strain patterns to explain neck and intertrochanteric fracture patterns were performed using a digital volume correlation (DVC) technique and compared to FE-predicted strains and experimentally observed fracture patterns. Although loaded identically, the femora exhibited different fracture types (six neck and eight intertrochanteric fractures). CT-based FE models matched the experimental observations well (86%) demonstrating that the fracture type can be predicted. DVC-measured and FE-predicted strains showed obvious consistency. Neither DXA-based BMD nor any morphologic characteristics such as neck diameter, femoral neck length, or neck shaft angle were associated with fracture type. In conclusion, patient-specific femoral structure correlates with fracture type and FE analyses were able to predict these fracture types. Also, the demonstration of FE and DVC as metrics of the strains in bones may be of substantial clinical value, informing treatment strategies and device selection and design. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:993-1001, 2018.
    Matched MeSH terms: Finite Element Analysis*
  3. Razali MF, Mahmud AS, Mokhtar N
    J Mech Behav Biomed Mater, 2018 Jan;77:234-241.
    PMID: 28954242 DOI: 10.1016/j.jmbbm.2017.09.021
    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C.
    Matched MeSH terms: Finite Element Analysis
  4. Ramlee MH, Gan HS, Daud SA, Abdul Wahab A, Abdul Kadir MR
    J Foot Ankle Surg, 2020 7 1;59(4):664-672.
    PMID: 32600559 DOI: 10.1053/j.jfas.2019.09.006
    Osteoporosis and osteoarthritis are common pathological problems of the human bone tissue. There are some cases of pilon fractures associated with these 2 pathological conditions. In terms of treatment, for a normal and healthy bone with pilon fracture, the use of the Delta external fixator is a favorable option because it can allow early mobilization for patients and provide stability for the healing process. However, the stability of the external fixator differs when there is low bone stiffness, which has not been previously investigated. Therefore, this study was conducted to determine the stability of the external fixator to treat pilon fracture associated with osteoporosis and osteoarthritis, particularly to differentiate the stress distribution and micromovement of fracture fragment. Three-dimensional finite element models of the ankle and foot bones were reconstructed based on the computed tomography datasets. The bones consisted of 5 metatarsal, 3 cuneiform, and 1 each of cuboid, navicular, calcaneus, talus, fibula, and tibia bones. They were assigned with linear isotropic behavior. The ankle joint consisted of ligament and cartilage, and they were assigned with the use of linear links and the Mooney-Rivlin model, respectively. During simulation of the gait cycle, 70 N and 350 N were applied axially to the tibia bone to represent the swing and stance phases, respectively. The metatarsal and calcaneus bones were fixed to prevent any movement of the rigid body. The study found that the greatest von Mises stress value was observed at the pin-bone interface for the osteoporosis (108 MPa) model, followed by the osteoarthritis (87 MPa) and normal (44 MPa) models, during the stance phase. For micromovement, the osteoporosis model had the largest value at 0.26 mm, followed by the osteoarthritis (0.09 mm) and normal (0.03 mm) models. In conclusion, the greatest magnitudes of stress and micromovement were observed for the osteoporosis bone and extra care should be taken to treat pilon fracture associated with this pathological condition.
    Matched MeSH terms: Finite Element Analysis
  5. Ramlee MH, Sulong MA, Garcia-Nieto E, Penaranda DA, Felip AR, Kadir MRA
    Med Biol Eng Comput, 2018 Oct;56(10):1925-1938.
    PMID: 29679256 DOI: 10.1007/s11517-018-1830-3
    Pilon fractures can be caused by high-energy vertical forces which may result in long-term patient immobilization. Many experts in orthopedic surgery recommend the use of a Delta external fixator for type III Pilon fracture treatment. This device can promote immediate healing of fractured bone, minimizing the rate of complications as well as allowing early mobilization. The characteristics of different types of the Delta frame have not been demonstrated yet. By using the finite element method, this study was conducted to determine the biomechanical characteristics of six different configurations (Model 1 until Model 6). CT images from the lower limb of a healthy human were used to reconstruct three-dimensional models of foot and ankle bones. All bones were assigned with isotropic material properties and the cartilages were assigned to exhibit hyperelasticity. A linear link was used to simulate 37 ligaments at the ankle joint. Axial loads of 70 and 350 N were applied at the proximal tibia to simulate the stance and swing phase. The metatarsals and calcaneus were fixed distally in order to prevent rigid body motion. A synthetic ankle bone was used to validate the finite element model. The simulated results showed that Delta3 produced the highest relative micromovement (0.09 mm, 7 μm) during the stance and swing phase, respectively. The highest equivalent von Mises stress was found at the calcaneus pin of the Delta4 (423.2 MPa) as compared to others. In conclusion, Delta1 external fixator was the most favorable option for type III Pilon fracture treatment. Graphical abstract ᅟ.
    Matched MeSH terms: Finite Element Analysis*
  6. Ramlee MH, Beng GK, Bajuri N, Abdul Kadir MR
    Med Biol Eng Comput, 2018 Jul;56(7):1161-1171.
    PMID: 29209961 DOI: 10.1007/s11517-017-1762-3
    The provision of the most suitable rehabilitation treatment for stroke patient remains an ongoing challenge for clinicians. Fully understanding the pathomechanics of the upper limb will allow doctors to assist patients with physiotherapy treatment that will aid in full arm recovery. A biomechanical study was therefore conducted using the finite element (FE) method. A three-dimensional (3D) model of the human wrist was reconstructed using computed tomography (CT)-scanned images. A stroke model was constructed based on pathological problems, i.e. bone density reductions, cartilage wane, and spasticity. The cartilages were reconstructed as per the articulation shapes in the joint, while the ligaments were modelled using linear links. The hand grip condition was mimicked, and the resulting biomechanical characteristics of the stroke and healthy models were compared. Due to the lower thickness of the cartilages, the stroke model reported a higher contact pressure (305 MPa), specifically at the MC1-trapezium. Contrarily, a healthy model reported a contact pressure of 228 MPa. In the context of wrist extension and displacement, the stroke model (0.68° and 5.54 mm, respectively) reported a lower magnitude than the healthy model (0.98° and 9.43 mm, respectively), which agrees with previously reported works. It was therefore concluded that clinicians should take extra care in rehabilitation treatment of wrist movement in order to prevent the occurrence of other complications. Graphical abstract ᅟ.
    Matched MeSH terms: Finite Element Analysis*
  7. Ramlee MH, Kadir MR, Murali MR, Kamarul T
    Med Eng Phys, 2014 Oct;36(10):1322-30.
    PMID: 25127377 DOI: 10.1016/j.medengphy.2014.05.015
    Pilon fractures are commonly caused by high energy trauma and can result in long-term immobilization of patients. The use of an external fixator i.e. the (1) Delta, (2) Mitkovic or (3) Unilateral frame for treating type III pilon fractures is generally recommended by many experts owing to the stability provided by these constructs. This allows this type of fracture to heal quickly whilst permitting early mobilization. However, the stability of one fixator over the other has not been previously demonstrated. This study was conducted to determine the biomechanical stability of these external fixators in type III pilon fractures using finite element modelling. Three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones were reconstructed from previously obtained CT datasets. Bones were assigned with isotropic material properties, while the cartilage was assigned as hyperelastic springs with Mooney-Rivlin properties. Axial loads of 350 N and 70 N were applied at the tibia to simulate the stance and the swing phase of a gait cycle. To prevent rigid body motion, the calcaneus and metatarsals were fixed distally in all degrees of freedom. The results indicate that the model with the Delta frame produced the lowest relative micromovement (0.03 mm) compared to the Mitkovic (0.05 mm) and Unilateral (0.42 mm) fixators during the stance phase. The highest stress concentrations were found at the pin of the Unilateral external fixator (509.2 MPa) compared to the Mitkovic (286.0 MPa) and the Delta (266.7 MPa) frames. In conclusion, the Delta external fixator was found to be the most stable external fixator for treating type III pilon fractures.
    Matched MeSH terms: Finite Element Analysis*
  8. Ramlee MH, Kadir MR, Murali MR, Kamarul T
    Med Eng Phys, 2014 Oct;36(10):1358-66.
    PMID: 25092623 DOI: 10.1016/j.medengphy.2014.07.001
    Subtalar dislocation is a rare injury caused by high-energy trauma. Current treatment strategies include leg casts, internal fixation and external fixation. Among these, external fixators are the most commonly used as this method is believed to provide better stabilization. However, the biomechanical stability provided by these fixators has not been demonstrated. This biomechanical study compares two commonly used external fixators, i.e. Mitkovic and Delta. CT imaging data were used to reconstruct three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones. The 3D models of the bones and cartilages were then converted into four-noded linear tetrahedral elements, whilst the ligaments were modelled with linear spring elements. Bones and cartilage were idealized as homogeneous, isotropic and linear. To simulate loading during walking, axial loading (70 N during the swing and 350 N during the stance phase) was applied at the end of diaphyseal tibia. The results demonstrate that the Mitkovic fixator produced greater displacement (peak 3.0mm and 15.6mm) compared to the Delta fixator (peak 0.8mm and 3.9 mm), in both the swing and stance phase, respectively. This study demonstrates that the Delta external fixator provides superior stability over the Mitkovic fixator. The Delta fixator may be more effective in treating subtalar dislocation.
    Matched MeSH terms: Finite Element Analysis*
  9. Ramakrishnan N, Nemade HB, Palathinkal RP
    Sensors (Basel), 2012;12(4):3789-97.
    PMID: 22666001 DOI: 10.3390/s120403789
    Recently we reported experimental and simulation results on an increase in resonance frequency of a SAW resonator caused by mass loading of micropillars made of SU-8, attached normal to the surface of the resonator. We concluded that SAW resonator and the SU-8 micropillars in unison form a system of coupled resonators. We have now extended this work and performed a finite element method simulation to study the resonance frequency characteristics of the SAW-based coupled resonator. In this paper we report the effect of the resonance frequency of the micropillars on the resonance frequency of the system of coupled resonators, and observe the coupling of micropillar resonance and the propagating SAW as described in the well known Dybwad system of coupled resonators.
    Matched MeSH terms: Finite Element Analysis
  10. Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T
    Injury, 2012 Jun;43(6):898-902.
    PMID: 22204773 DOI: 10.1016/j.injury.2011.12.006
    The use of open wedge high tibial osteotomy (HTO) to correct varus deformity of the knee is well established. However, the stability of the various implants used in this procedure has not been previously demonstrated. In this study, the two most common types of plates were analysed (1) the Puddu plates that use the dynamic compression plate (DCP) concept, and (2) the Tomofix plate that uses the locking compression plate (LCP) concept. Three dimensional model of the tibia was reconstructed from computed tomography images obtained from the Medical Implant Technology Group datasets. Osteotomy and fixation models were simulated through computational processing. Simulated loading was applied at 60:40 ratios on the medial:lateral aspect during single limb stance. The model was fixed distally in all degrees of freedom. Simulated data generated from the micromotions, displacement and, implant stress were captured. At the prescribed loads, a higher displacement of 3.25 mm was observed for the Puddu plate model (p<0.001). Coincidentally the amount of stresses subjected to this plate, 24.7 MPa, was also significantly lower (p<0.001). There was significant negative correlation (p<0.001) between implant stresses to that of the amount of fracture displacement which signifies a less stable fixation using Puddu plates. In conclusion, this study demonstrates that the Tomofix plate produces superior stability for bony fixation in HTO procedures.
    Matched MeSH terms: Finite Element Analysis*
  11. Rahmandoust M, Ochsner A
    J Nanosci Nanotechnol, 2012 Oct;12(10):8129-36.
    PMID: 23421189
    In this study, Single-Walled and Multi-Walled Carbon Nanotubes in their perfect forms were investigated by the Finite Element Method. Details on the modeling of the structure are provided in this paper, including the appropriate elements, the element properties that should be defined based on the atomic structure of Carbon Nanotubes and the corresponding chemical bonds. Non-covalent van der Waals interactions between two neighbor atoms as well as the required approximations for the modeling of the structures with this kind of interaction are also presented. Specific attention was dedicated to the necessity of using some time- and energy-consuming steps in the simulation process. First, the effect of simulating only a single ring of the whole structure is studied to find out if it would represent the same mechanical behavior as the long structure. Results show that by applying an appropriate set of boundary conditions, the stiffness of the shortened structure is practically equal to the long perfect structure. Furthermore, Multi-Walled Carbon Nanotube structures with and without defining the van der Waals force are studied. Based on the observations, applying the van der Waals force does not significantly influence the obtained Young's modulus of the structure in the case of a uniaxial tensile test.
    Matched MeSH terms: Finite Element Analysis
  12. Rahimian Koloor SS, Karimzadeh A, Yidris N, Petrů M, Ayatollahi MR, Tamin MN
    Polymers (Basel), 2020 Jan 07;12(1).
    PMID: 31936184 DOI: 10.3390/polym12010157
    Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE). Such a characteristic evolution curve is computed using a validated finite element model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber failure modes in angle lamina. The yield point of composite structures is identified to correspond to a 5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric MD FRP composite structures under flexural loading conditions are established based on Hashin unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria, in which the accumulation of energy dissipated due to all damage modes is less than 5% of the fracture energy required for the structural rupture.
    Matched MeSH terms: Finite Element Analysis
  13. Rad MA, Tijjani AS, Ahmad MR, Auwal SM
    Sensors (Basel), 2016 Dec 23;17(1).
    PMID: 28025571 DOI: 10.3390/s17010014
    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m-1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N-1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m-1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.
    Matched MeSH terms: Finite Element Analysis*
  14. R Koloor SS, Karimzadeh A, Abdullah MR, Petrů M, Yidris N, Sapuan SM, et al.
    Polymers (Basel), 2021 Jan 22;13(3).
    PMID: 33498984 DOI: 10.3390/polym13030344
    The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.
    Matched MeSH terms: Finite Element Analysis
  15. Pirouzi G, Abu Osman NA, Eshraghi A, Ali S, Gholizadeh H, Wan Abas WA
    ScientificWorldJournal, 2014;2014:849073.
    PMID: 25197716 DOI: 10.1155/2014/849073
    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.
    Matched MeSH terms: Finite Element Analysis
  16. Patil PG, Seow LL, Uddanwadikar R, Ukey PD
    J Prosthet Dent, 2021 Jan;125(1):138.e1-138.e8.
    PMID: 33393474 DOI: 10.1016/j.prosdent.2020.09.015
    STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level.

    PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions.

    MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed.

    RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading.

    CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.

    Matched MeSH terms: Finite Element Analysis
  17. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Apr;131(4):675-682.
    PMID: 35667890 DOI: 10.1016/j.prosdent.2022.04.018
    STATEMENT OF PROBLEM: The edentulous mandible is commonly treated with a 2-implant overdenture. A change in diameter of the implants may affect the biomechanical behavior of the overdenture, but information on these effects is lacking.

    PURPOSE: The purpose of this 3D finite element analysis study was to evaluate the biomechanical behavior of 2-implant mandibular overdentures (2IMO) and their individual components by using implants of different diameters.

    MATERIAL AND METHODS: A 3D mandibular model was obtained from the cone beam computed tomography (CBCT) images of a 59-year-old edentulous man, and a 3D denture model was developed from intraoral scanning files in the Mimics software program. A 3D model of different diameters of implants (2.5 mm, 3.0 mm, 3.5 mm, and 4.0 mm) with a LOCATOR attachment was developed in the Solidworks software program. Two same-sized implants were inserted in the mandibular model at 10 mm from the midline in the 3Matics software program. A vertical load of 100 N was applied on the first molar region on the right side or both sides in the ANSYS software program. The maximum von Mises stresses and strains were recorded and analyzed.

    RESULTS: Stresses within the implants decreased with an increase in diameter (from 2.5 mm to 3 mm, 3.5 mm, and 4.0 mm) of the implants. The highest stresses were observed with 2.5-mm-diameter implants (0.949 MPa under unilateral and 0.915 MPa under bilateral loading) and the lowest with Ø4-mm implants (0.710 MPa under unilateral and 0.703 MPa under bilateral loading). The strains on the implants ranged between 0.0000056 and 0.0000097, and those on the mandible ranged between 0.0000513 and 0.0000566 across all diameters of the implants without following a specific trend.

    CONCLUSIONS: In 2IMO, the stresses in the implants and mandible decreased with an increase in the diameter of the implants. The implants of lesser diameter (2.5 mm) exhibited the highest stresses and strains, and the implants of the largest diameter (4 mm) exhibited the lowest stresses and strains under unilateral and bilateral loading conditions.

    Matched MeSH terms: Finite Element Analysis
  18. Panjehpour M, Chai HK, Voo YL
    PLoS One, 2015;10(6):e0130734.
    PMID: 26110268 DOI: 10.1371/journal.pone.0130734
    Deep beams are commonly used in tall buildings, offshore structures, and foundations. According to many codes and standards, strut-and-tie model (STM) is recommended as a rational approach for deep beam analyses. This research focuses on the STM recommended by ACI 318-11 and AASHTO LRFD and uses experimental results to modify the strut effectiveness factor in STM for reinforced concrete (RC) deep beams. This study aims to refine STM through the strut effectiveness factor and increase result accuracy. Six RC deep beams with different shear span to effective-depth ratios (a/d) of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 were experimentally tested under a four-point bending set-up. The ultimate shear strength of deep beams obtained from non-linear finite element modeling and STM recommended by ACI 318-11 as well as AASHTO LRFD (2012) were compared with the experimental results. An empirical equation was proposed to modify the principal tensile strain value in the bottle-shaped strut of deep beams. The equation of the strut effectiveness factor from AASHTTO LRFD was then modified through the aforementioned empirical equation. An investigation on the failure mode and crack propagation in RC deep beams subjected to load was also conducted.
    Matched MeSH terms: Finite Element Analysis
  19. Pai S, Bhat V, Patil V, Naik N, Awasthi S, Nayak N
    J Int Soc Prev Community Dent, 2020 06 15;10(3):279-285.
    PMID: 32802773 DOI: 10.4103/jispcd.JISPCD_75_20
    Aim: Adhesive restoration does not depend primarily on the configuration of the shape of the cavity. Under varying loading conditions, it is essential to know the stress concentration and load transfer mechanism for distinct cavity shapes. The aim of this study was to evaluate and compare the biomechanical characteristics of various cavity shapes, namely oval, elliptical, trapezoidal, and rectangular shapes of class V cavities on mandibular premolars restored with amalgam, glass ionomer cement, and Cention N using three-dimensional (3D) finite element analysis.

    Materials and Methods: A 3D prototype of a mandibular premolar was generated by Digital Imaging and Communications in Medicine (DICOM) images obtained from the cone beam computed tomography and imported to 3D modeling software tool, SpaceClaim. The four distinct load magnitudes of 100, 150, 200, and 250N were applied as a pressure load perpendicular to the lingual plane of the lingual cusp of the occlusal surface (normal load) and at 45° to same (oblique load). The stress distribution patterns and the maximum von Mises stresses were analyzed and compared.

    Results: The occlusal stresses were distributed from the force loading point in an approximate actinomorphic pattern, and when the force load was close to the margin, the stress was much greater.

    Conclusion: Ovoid cavity showed lesser stress concentration and deformation for each of the tested restorative material.

    Matched MeSH terms: Finite Element Analysis
  20. Oshkour AA, Talebi H, Shirazi SF, Bayat M, Yau YH, Tarlochan F, et al.
    ScientificWorldJournal, 2014;2014:807621.
    PMID: 25302331 DOI: 10.1155/2014/807621
    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
    Matched MeSH terms: Finite Element Analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links