Displaying publications 21 - 40 of 66 in total

Abstract:
Sort:
  1. Talib AAA, Jumahat A, Jawaid M, Sapiai N, Leao AL
    Materials (Basel), 2021 Feb 02;14(3).
    PMID: 33540915 DOI: 10.3390/ma14030701
    Basalt fibre is a promising mineral fibre that has high potential to replace synthetic based glass fibre in today's stringent environmental concern. In this study, friction and wear characteristics of glass and basalt fibres reinforced epoxy composites were studied and comparatively evaluated at two test stages. The first stage was conducted at fixed load, speed and distance under three different conditions; adhesive, abrasive and erosive wear, wherein each composite specimens slide against steel, silicon carbide, and sand mixtures, respectively. The second stage was conducted involving different types of adhesive sliding motions against steel counterpart; unidirectional and reciprocating motion, with the former varied at pressure-velocity (PV) factor; 0.23 MPa·m/s and 0.93 MPa·m/s, while the latter varied at counterpart's configuration; ball-on-flat (B-O-F) and cylinder-on-flat (C-O-F). It was found that friction and wear properties of composites are highly dependent on test conditions. Under 10 km test run, Basalt fibre reinforced polymer (BFRP) composite has better wear resistance against erosive sand compared to Glass fibre reinforced polymer (GFRP) composite. In second stage, BFRP composite showed better wear performance than GFRP composite under high PV of unidirectional sliding test and under B-O-F configuration of reciprocating sliding test. BFRP composite also exhibited better friction properties than GFRP composite under C-O-F configuration, although its specific wear rate was lower. In scanning electron microscopy examination, different types of wear mechanisms were revealed in each of the test conducted.
    Matched MeSH terms: Friction
  2. Chitturi V, Pedapati SR, Awang M
    Materials (Basel), 2019 Nov 26;12(23).
    PMID: 31779107 DOI: 10.3390/ma12233901
    Automobile, aerospace, and shipbuilding industries are looking for lightweight materials for cost effective manufacturing which demands the welding of dissimilar alloy materials. In this study, the effect of tool rotational speed, welding speed, tilt angle, and pin depth on the weld joint were investigated. Aluminum 5052 and 304 stainless-steel alloys were joined by friction stir welding in a lap configuration. The design of the experiments was based on Taguchi's orthogonal array for conducting the experiments with four factors and three levels for each factor. The microstructural analysis showed tunnel defects, micro voids, and cracks which formed with 0° and 1.5° tilt angles. The defects were eliminated when the tilt angle increased to 2.5° and a mixed stir zone was formed with intermetallic compounds. The presence of the intermetallic compounds increased with the increase in tilt angle and pin depth which further resulted in obtaining a defect-free weld. Hooks were formed on either side of the weld zone creating a mechanical link for the joint. A Vickers hardness value of HV 635.46 was achieved in the mixed stir zone with 1000 rpm, 20 mm/min, and 4.2 mm pin depth with a tilt angle of 2.5°, which increased by three times compared to the hardness of SS 304 steel. The maximum shear strength achieved with 800 rpm, 40 mm/min, and a 4.3 mm pin depth with a tilt angle of 2.5° was 3.18 kN.
    Matched MeSH terms: Friction
  3. Ahmad S, Badshah S, Ul Haq I, Abdullah Malik S, Amjad M, Nasir Tamin M
    Materials (Basel), 2019 Oct 23;12(21).
    PMID: 31652687 DOI: 10.3390/ma12213463
    Wire ropes undergo a fretting fatigue condition when subjected to axial and bending loads. The fretting behavior of wires are classified as line contact and trellis point of contact. The experimental study on the fatigue of wire ropes indicates that most of the failure occurs due to high localized stresses at trellis point of contact. A continuum damage mechanics approach was previously proposed to estimate the fatigue life estimation of wire ropes. The approach majorly depends on the high value of localized stresses as well as the micro-slippage occurs at the contact region. Finite element approach has been used to study radial and axial distribution of stresses and displacement in order to clearly understand the evolution of stresses and existence of relative displacements between neighboring wires under various loading and frictional conditions. The relative movements of contacting wires are more when friction is not considered. In the presence of friction, the relative movement occurs at the boundaries of the contact region. The location of microslip in the presence of friction is backed by the experimental observation stating the crack is initiated at or the outer boundary of the contact spot. The existence of slip is due to different displacement of outer and central wires.
    Matched MeSH terms: Friction
  4. Tamjidy M, Baharudin BTHT, Paslar S, Matori KA, Sulaiman S, Fadaeifard F
    Materials (Basel), 2017 May 15;10(5).
    PMID: 28772893 DOI: 10.3390/ma10050533
    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
    Matched MeSH terms: Friction
  5. Nordin JA, Prajitno DH, Saidin S, Nur H, Hermawan H
    PMID: 25842138 DOI: 10.1016/j.msec.2015.03.019
    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis.
    Matched MeSH terms: Friction
  6. Setu SA, Dullens RP, Hernández-Machado A, Pagonabarraga I, Aarts DG, Ledesma-Aguilar R
    Nat Commun, 2015;6:7297.
    PMID: 26073752 DOI: 10.1038/ncomms8297
    Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems.
    Matched MeSH terms: Friction
  7. Hussain H. Al-Kayiem, Iylia Elena Abdul Jamil
    MyJurnal
    In the moving layer of particles with variable concentration, the shear estimation is not directly predictable and there is no existing clear mathematical or empirical formula to achieve this objective. This paper presents a developed approach to estimate the shear forces in a flow having suspended and moving layers of solid particles in liquid flow. The two-layer approach was taken whereby the flow consisting of one upper suspended layer of particles in the liquid, and the bottom layer was the moving bed of particles. In the present work, the method of finding the force acting on the pipe wall by the particles in the layer, termed as the ‘dry force’, was presented using a “pseudo hydrostatic pressure” method. To attain the equation for the dry force, a mathematical approach is taken with the assumptions that the flow is horizontal, two-phase pipe flow (solid in Newtonian liquid), incompressible and it is at steady-state. The analysis was conducted considering various particles densities, various concentrations in the suspended layer and different thicknesses of the moving bed. Changing the concentration in the suspended layer from 0.00001 up to 0.001 didn’t showed significant changes in the dry force evaluation. The dry friction force is increasing with increasing moving bed thickness. The developed mathematical model can be
    applicable in solving for the shear force in horizontal solid liquid two-phase flows.
    Matched MeSH terms: Friction
  8. Syed Baharom Syed Osman, Mohammad Nabil Fikri, Fahad Irfan Siddique
    MyJurnal
    The long term objective of this research is to look into the possibility of replacing soil strength parameters such as cohesion and angle of friction with electrical resistivity value for the purpose of computing among others, factor of safety in slopes or bearing capacity of soil. This paper however is limited to the investigation of correlation between electrical resistivity with some selected soil parameters. Electrical resistivity tests, using a basic multi meter, steel moulds and other related equipment, were conducted in the laboratory on soil samples with variations in soil type, compaction energy and moisture content. The samples consisted of predominantly clay, silt and sandy size particles and were compacted in a 100 x 100 mm square mould, while the corresponding electrical resistivity tests were carried out using the disc electrode method in accordance to BS 1377. The values of the electrical parameters such as voltage, current and resistance, with the corresponding value of soil parameters such as cohesion, angle of friction and moisture content, were measured and recorded. The results of the tests produced some initial crude relationships between electrical resistivity and the selected soil parameters. The strongest correlation between electrical resistivity and angle of internal friction, φ, was obtained from the clay size samples with R2 of 0.824, while the maximum correlation between electrical resistivity and moisture content again was obtained through the clay samples with R2 of 0.818. From the other results and graphs analyzed, some consistencies and specific trends of behaviour observed gave some early indications that a more detail and precise correlation between electrical resistivity and soil strength parameters could be very well possible in future.
    Matched MeSH terms: Friction
  9. Ismail, I., Anuar, M. S., Shamsudin, R.
    MyJurnal
    Liberica coffee is the most important coffee species grown in Malaysia. However, there is little or no research at all conducted on coffee berries and green coffee beans since the plant itself is a low income crop in Malaysia. Therefore, research on Malaysian Liberica coffee can help to increase the knowledge of coffee farmers and coffee manufacturers in the processing and handling of the coffee. Physical properties of Liberica coffee berries and beans were investigated the current study. The properties investigated include the size, mass, density, coefficient of friction, angle of repose, fracture force and colour. In comparison to Arabica and Robusta coffee, Liberica coffee has the biggest size, mass, true density and fracture force values but were lower in bulk density in both berries and beans. The Liberica berries and beans were found to be orange-ish and yellowish colour respectively. Angle of repose was low and approximately similar in berries and beans while jute fibre gave the highest friction to both Liberica berries and beans.
    Matched MeSH terms: Friction
  10. Salleh, N.M., Shauri, R.L.A., Nasir, K., Remeli, N.H., Kamal, M.M.
    MyJurnal
    In an earlier study, a three-fingered robot hand was developed for assembly work. Proportional Integral Derivative (PID) control was used to control the position of a DC micromotor measured by an encoder. However, PID control alone could not cater the nonlinearities due to friction of gears and varying loads applied to the finger. Therefore, in order to develop an intelligent control algorithm in future, the effects of varying PID gains need to be investigated to distinguish the optimal value that could produce the best transient response performance. This paper discusses the effect of varying PID gains on position transient response of the joint motor of robot hand through real-time experiments. Several ranges of KP, KI and KD were identified based on the required transient response parameters such as percentage overshoot (%OS), settling time (TS) of within 2%, steady state error (SSE) and rise time (TR). The gains are tuned across the range by a fixed interval with the tuning order starting from KP, KI and KD. It can be observed that the suitable ranges of PID are 0.3 to 0.5 for KP, 1.15 to 1.45 for KI and 0.10 to 0.14 for KD. Meanwhile, the optimum value of 0.4, 1.45 and 0.10 for KP, KI and KD respectively is found to produce 0 of % OS, 5.09 sec of TS and 2.48 sec of TR. Hence, the gains can be applied to the development of an improved position control using intelligent method for the robot hand in future works.
    Matched MeSH terms: Friction
  11. Hussanan A, Zuki Salleh M, Tahar RM, Khan I
    PLoS One, 2014;9(10):e108763.
    PMID: 25302782 DOI: 10.1371/journal.pone.0108763
    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
    Matched MeSH terms: Friction
  12. Ali F, Khan I, Shafie S
    PLoS One, 2014;9(2):e85099.
    PMID: 24551033 DOI: 10.1371/journal.pone.0085099
    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.
    Matched MeSH terms: Friction
  13. Mabood F, Khan WA, Ismail AI
    PLoS One, 2013;8(12):e83581.
    PMID: 24376722 DOI: 10.1371/journal.pone.0083581
    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
    Matched MeSH terms: Friction
  14. Ali F, Khan I, Samiulhaq, Shafie S
    PLoS One, 2013;8(6):e65223.
    PMID: 23840321 DOI: 10.1371/journal.pone.0065223
    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables.
    Matched MeSH terms: Friction
  15. Bachok N, Ishak A, Pop I
    PLoS One, 2013;8(4):e60766.
    PMID: 23577156 DOI: 10.1371/journal.pone.0060766
    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
    Matched MeSH terms: Friction
  16. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2015;10(5):e0122663.
    PMID: 25933066 DOI: 10.1371/journal.pone.0122663
    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
    Matched MeSH terms: Friction
  17. Ziaee M, Hejazi F
    PLoS One, 2023;18(8):e0290248.
    PMID: 37590241 DOI: 10.1371/journal.pone.0290248
    Coulomb friction is considered as a mechanical approach to diminish the structural responses during the excitations. However, in case of severe oscillations supplementary mechanisms are employed besides the friction to mitigate the destructive effects of the vibrations in structures. Therefore, the main goal of this research is to develop a new Hybrid System (HS) which is a parallel combination of Viscous Damping (VD) and Coulomb friction for structures subjected to dynamic load. To achieve this goal, the effect of viscous damper is embedded in the equation of motion which is proposed by Den Hartog for a Single-Degree-of-Freedom (SDOF) Coulomb system, and has been extensively implemented for past few decades. In the considered numerical example in this study, implementing the proposed HDM in system resulted in decreasing the maximum displacement in the range of 1% to 98% for different amounts of force amplitude and viscous damping ratios. Also, applying the proposed HDM increased the time lag for about up to 24% for the frequency ratios greater than 1. The developed hybridized system in this study can be utilised as new generation of Tuned Mass Damper (TMD) to improve their energy dissipating efficiency under severe excitations.
    Matched MeSH terms: Friction
  18. Nirmal U
    Polymers (Basel), 2018 Sep 25;10(10).
    PMID: 30960991 DOI: 10.3390/polym10101066
    The current work is an attempt to reduce friction coefficient of the treated betelnut fibre reinforced polyester (T-BFRP) composites by aging them in twelve different solutions with different kinematic viscosities. The test will be performed on a pin on disc (POD) wear test rig using different applied loads (5⁻30 N), different sliding distances (0⁻6.72 km) at sliding speed of 2.8 m/s subjected to a smooth stainless steel counterface (AISI-304). Different orientations of the fibre mats such as anti-parallel (AP) and parallel (P) orientations subjected to the rotating counterface will be considered. The worn surfaces were examined through optical microscopy imaging and it was found that the aged specimens had significantly lower damages as compared to neat polyester (NP) and the unaged samples. Besides, P-O samples revealed lower friction coefficients as compared to AP-O, i.e., reduction was about 24.71%. Interestingly, aging solutions with lower kinematic viscosities revealed lower friction coefficients of the aged T-BFRP composites when compared to the ones aged in higher kinematic viscosities.
    Matched MeSH terms: Friction
  19. Zainuddin N, Saleh H, Hashim I, Roslan R
    Sains Malaysiana, 2016;45:315-321.
    Effects of radiation on free convection about a heated horizontal circular cylinder in the presence of heat generation is investigated numerically. The cylinder is fixed and immersed in a stationary fluid, in which the temperature is uniformly heated about the temperature of the surrounding fluid. The governing equations are transformed into dimensionless non-linear partial differential equations and solved by employing a finite difference method. An implicit finite difference scheme of Crank Nicolson method is used to analyze the results. This study determined the effects of radiation parameter, heat generation parameter, and the Prandtl number, on the temperature and velocity profiles. The results of the local heat transfer and skin-friction coefficient in the presence of radiation for some selected values of and are shown graphically.
    Matched MeSH terms: Friction
  20. Muhammad Khairul Anuar Mohamed, Nor Aida Zuraimi Md Noar, Mohd Zuki Salleh, Anuar Ishak
    Sains Malaysiana, 2016;45:189-296.
    In this paper, the problem of free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation and constant wall temperature is investigated. The transformed boundary layer equations are solved numerically using finite difference scheme namely the Keller-box method. Numerical solutions were obtained for the reduced skin friction coefficient, Nusselt number and Sherwood number as well as the velocity and temperature profiles.The features of the flow and heat transfer characteristics for various values of the Brownian motion parameter, thermophoresis parameter, Lewis number and Eckert number were analyzed and discussed.
    Matched MeSH terms: Friction
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links