Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Ang GY, Yu CY, Yean CY
    Biosens Bioelectron, 2012 Oct-Dec;38(1):151-6.
    PMID: 22705404 DOI: 10.1016/j.bios.2012.05.019
    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.
    Matched MeSH terms: Gold/chemistry
  2. Low KF, Zain ZM, Yean CY
    Biosens Bioelectron, 2017 Jan 15;87:256-263.
    PMID: 27567251 DOI: 10.1016/j.bios.2016.08.064
    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.
    Matched MeSH terms: Gold/chemistry
  3. Ten ST, Hashim U, Gopinath SC, Liu WW, Foo KL, Sam ST, et al.
    Biosens Bioelectron, 2017 Jul 15;93:146-154.
    PMID: 27660016 DOI: 10.1016/j.bios.2016.09.035
    Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10(-15)M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences.
    Matched MeSH terms: Gold/chemistry
  4. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    Biosens Bioelectron, 2016 Dec 15;86:398-405.
    PMID: 27414245 DOI: 10.1016/j.bios.2016.06.077
    A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP.
    Matched MeSH terms: Gold/chemistry
  5. Geetha Bai R, Muthoosamy K, Zhou M, Ashokkumar M, Huang NM, Manickam S
    Biosens Bioelectron, 2017 Jan 15;87:622-629.
    PMID: 27616288 DOI: 10.1016/j.bios.2016.09.003
    In this study, a sonochemical approach was utilised for the development of graphene-gold (G-Au) nanocomposite. Through the sonochemical method, simultaneous exfoliation of graphite and the reduction of gold chloride occurs to produce highly crystalline G-Au nanocomposite. The in situ growth of gold nanoparticles (AuNPs) took place on the surface of exfoliated few-layer graphene sheets. The G-Au nanocomposite was characterised by UV-vis, XRD, FTIR, TEM, XPS and Raman spectroscopy techniques. This G-Au nanocomposite was used to modify glassy carbon electrode (GCE) to fabricate an electrochemical sensor for the selective detection of nitric oxide (NO), a critical cancer biomarker. G-Au modified GCE exhibited an enhanced electrocatalytic response towards the oxidation of NO as compared to other control electrodes. The electrochemical detection of NO was investigated by linear sweep voltammetry analysis, utilising the G-Au modified GCE in a linear range of 10-5000μM which exhibited a limit of detection of 0.04μM (S/N=3). Furthermore, this enzyme-free G-Au/GCE exhibited an excellent selectivity towards NO in the presence of interferences. The synergistic effect of graphene and AuNPs, which facilitated exceptional electron-transfer processes between the electrolyte and the GCE thereby improving the sensing performance of the fabricated G-Au modified electrode with stable and reproducible responses. This G-Au nanocomposite introduces a new electrode material in the sensitive and selective detection of NO, a prominent biomarker of cancer.
    Matched MeSH terms: Gold/chemistry*
  6. Alim S, Vejayan J, Yusoff MM, Kafi AKM
    Biosens Bioelectron, 2018 Dec 15;121:125-136.
    PMID: 30205246 DOI: 10.1016/j.bios.2018.08.051
    The innovation of nanoparticles assumes a critical part of encouraging and giving open doors and conceivable outcomes to the headway of new era devices utilized as a part of biosensing. The focused on the quick and legitimate detecting of specific biomolecules using functionalized gold nanoparticles (Au NPs), and carbon nanotubes (CNTs) has turned into a noteworthy research enthusiasm for the most recent decade. Sensors created with gold nanoparticles or carbon nanotubes or in some cases by utilizing both are relied upon to change the very establishments of detecting and distinguishing various analytes. In this review, we will examine the current utilization of functionalized AuNPs and CNTs with other synthetic mixes for the creation of biosensor prompting to the location of particular analytes with low discovery cutoff and quick reaction.
    Matched MeSH terms: Gold/chemistry*
  7. Letchumanan I, Md Arshad MK, Balakrishnan SR, Gopinath SCB
    Biosens Bioelectron, 2019 Apr 01;130:40-47.
    PMID: 30716591 DOI: 10.1016/j.bios.2019.01.042
    This paper primarily demonstrates the approach to enhance the sensing performance on antigen C-reactive protein (CRP) and anti-CRP antibody binding event. A nanogapped electrode structure with the gap of ~100 nm was modified by the anti-CRP antibody (Probe) to capture the available CRP. In order to increase the amount of antigen to be captured, a gold nanorod with 119 nm in length and 25 nm in width was integrated, to increase the surface area. A comparative study between the existence and non-existence of gold nanorod utilization was evaluated. Analysis of the sensing surface was well-supported by atomic force microscopy, scanning electron microscopy, 3D nano-profilometry, high-power microscopy and UV-Vis spectroscopy. The dielectric voltammetric analysis was carried out from 0 V to 2 V. The sensitivity was calculated based on 3σ and attained as low as 1 pM, which is tremendously low compared to real CRP concentration (119 nM) in human blood serum. The gold nanorod conjugation with antibody has enhanced the sensitivity to 100 folds (10 fM). The specificity of the CRP detection by the proposed strategy was anchored by ELISA and failure in the detection of human blood clotting factor IX by voltammetry. Despite, CRP antigen was further detected in human serum by spiking CRP to run-through the detection with the physiologically relevant samples.
    Matched MeSH terms: Gold/chemistry
  8. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Gold/chemistry
  9. Gan X, Gong T, Zheng Y, Gopinath SCB, Zhao K
    Biotechnol Appl Biochem, 2021 Apr;68(2):272-278.
    PMID: 32275089 DOI: 10.1002/bab.1921
    C-reactive protein (CRP) is an acute phase reactant to be a marker of inflammation and has been correlated with the cardiac injury. An immunoassay was performed using anti-human CRP antibody on an InterDigitated electrode (IDE) sensor to determine and specify CRP concentration for diagnosing the condition of myocardial inflammation. To promote the detection, gold nanoparticle (GNP) was seeded on the aminated-IDE surface. Anti-CRP was hitched on the GNP-seeded surface and identified the abundance of CRP. The limit of quantification was found as 100 fM, and the higher current response was noticed by increasing CRP concentrations with the sensitivity at 1 pM. Furthermore, CRP-spiked human serum did not interfere the determination of CRP and increased the current response, indicating suitability for a real-life sample. Similarly, the control experiments with nonimmune antibody Troponin I are not showing the definite current responses, proving the selective identification of CRP. This method of diagnosing is needful to determine the cardiovascular injury at the right time.
    Matched MeSH terms: Gold/chemistry*
  10. Wang S, Su S, Yu C, Gopinath SCB, Yang Z
    Biotechnol Appl Biochem, 2021 Aug;68(4):726-731.
    PMID: 32621620 DOI: 10.1002/bab.1981
    The urinary C-terminal telopeptide fragment of type II collagen (uCTX-II) has been reported as the efficient blood-based biomarker for osteoarthritis, which affects knees, hands, spine, and hips. This study reports a sensing strategy with antibody-conjugated gold nanoparticles (GNP) on an interdigitated electrode (IDE) to determine uCTX-II. The GNP-antibody complex was chemically immobilized on the IDE surface through the amine linker. uCTX-II was determined by monitoring the alteration in current upon interacting the GNP-complexed antibody. This strategy was improved the detection by attracting higher uCTX-II molecules, and the detection limit falls in the range of 10-100 pM with an acceptable regression value [y = 0.6254x - 0.4073, R² = 0.9787]. The sensitivity of the detection was recognized at 10 pM. Additionally, upon increasing the uCTX-II concentration, the current changes were increased in a linear fashion. Control detection with nonimmune antibody and control protein do not increase the current level, confirming the specific detection of uCTX-II. This method of detection helps in diagnosing osteoarthritis and its follow-up treatment.
    Matched MeSH terms: Gold/chemistry*
  11. Huang Y, Zhang L, Li Z, Gopinath SCB, Chen Y, Xiao Y
    Biotechnol Appl Biochem, 2021 Aug;68(4):881-888.
    PMID: 33245588 DOI: 10.1002/bab.2008
    17β-Estradiol-E2 (17β-E2) is a steroid hormone that plays a major role in the reproductive endocrine system and is involved in various processes, such as pregnancy, fertility, and menopause. In this study, the performance of an enzyme-linked immunosorbent assay (ELISA) for 17β-E2 quantification was enhanced by using a gold nanoparticle (GNP)-conjugated aptamer. An anti-17β-E2-aptamer-GNP antibody was immobilized on an amine-modified ELISA surface. Then, 17β-E2 was allowed to interact with and be sandwiched by antibodies. Aptamer-GNP conjugation was confirmed by colorimetric assays via the naked eye and UV-visible light spectroscopy. The detection limit based on a signal-to-noise ratio (S/N) of 3 was estimated to be 1.5 nM (400 pg/mL), and the linear range was 1.5-50 nM. Control experiments (without 17β-E2/with a complementary aptamer sequence/with a nonimmune antibody) confirmed the specific detection of 17β-E2. Moreover, 17β-E2 spiking of human serum did not interrupt the interaction between 17β-E2 and its antibody and aptamer. Thus, the developed ELISA can be used as an alternate assay for quantification of 17β-E2 and assessment of endocrine-related gynecological problems.
    Matched MeSH terms: Gold/chemistry*
  12. Yahaya ML, Zakaria ND, Noordin R, Abdul Razak K
    Biotechnol Appl Biochem, 2021 Oct;68(5):1095-1106.
    PMID: 32935878 DOI: 10.1002/bab.2029
    Salmonella and Shigella genera are common pathogens that contaminate foods and beverages. Lateral flow assays (LFA) are commonly used to detect these pathogens. However, most of the developed LFAs are for single detection. Simultaneous detection of pathogens is required to reduce cost and time. In this work, 40 nm gold nanoparticles (AuNPs) were synthesized using the seeding growth method as labeling agent. The AuNPs were characterized and conjugated with mouse anti-Gram negative endotoxin antibody. The nitrocellulose membrane HF135 was immobilized with anti-mouse IgG antibody as a control line and two separate test lines with either anti-Shigella or anti-Salmonella antibody, respectively. Color intensity of test lines was observed for positive samples. A milk sample was used as proof of concept to mimic actual contamination. The limit of detection of the LFA was 3.0 × 106 CFU/mL for multiplex detection of Shigella flexneri and Salmonella Typhi and for both single detections. The result was comparable with the enzyme-linked immunosorbent assay (ELISA) analysis. The produced LFA could differentiate between Shigella flexneri, Shigella boydii, Salmonella Enteritidis, and Salmonella Typhi. The developed LFA was able to identify Shigella flexneri and Salmonella Typhi with good sensitivity in milk samples, thus, beneficial to ensure the safety of food before entering the market.
    Matched MeSH terms: Gold/chemistry*
  13. Haarindraprasad RP, Thurga Devi N, Thevendran R, Maheswaran S
    Biotechnol J, 2023 Aug;18(8):e2300092.
    PMID: 37139895 DOI: 10.1002/biot.202300092
    The creation of nanostructure is profound for the generation of nanobiosensors in several medical diagnosis. Here, we employed an aqueous hydrothermal route using Zinc-oxide (ZnO) and Gold (Au), which under optimal conditions formed an ultra-crystalline rose-like nanostructure textured with nanowires on the surface, coined as "spiked nanorosette." The spiked nanorosette structures was further characterized to possess crystallites of ZnO and Au grains with average sizes of 27.60 and 32.33 nm, respectively. The intensity for both ZnO (002) and Au (111) planes of the nanocomposite was inferred to be controlled by fine-tuning the percentage of Au nanoparticles doped in the ZnO/Au matrix, as referred by X-ray diffraction analysis. The formation of ZnO/Au-hybrid nanorosettes were additionally verified by the distinct corresponding peaks from photoluminescence and X-ray photoelectron spectroscopy, supported by electrical validations. The biorecognition properties of the spiked nanorosettes were also examined using custom targeted and non-target DNA sequences. The DNA targeting capabilities of the nanostructures were analyzed by Fourier Transform Infrared and electrochemical impedance spectroscopy. The fabricated nanowire-embedded nanorosette exhibited a detection limit at the lower picomolar range of 1 × 10-12 M, with high selectivity, stability and reproducibility and good linearity, under optimal conditions. Impedance-based techniques are more sensitive to the detection of nucleic acid molecule whereas this novel spiked nanorosette demonstrate promising attributes as excellent nanostructures for nanobiosensor developments and their potential future application for nucleic-acids or disease diagnostics.
    Matched MeSH terms: Gold/chemistry
  14. Chang SH
    Carbohydr Polym, 2021 Mar 15;256:117423.
    PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423
    Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
    Matched MeSH terms: Gold/chemistry*
  15. Yusoh NA, Ahmad H, Gill MR
    ChemMedChem, 2020 Nov 18;15(22):2121-2135.
    PMID: 32812709 DOI: 10.1002/cmdc.202000391
    Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.
    Matched MeSH terms: Gold/chemistry
  16. Yu CY, Ang GY, Yean CY
    Chem Commun (Camb), 2013 Mar 11;49(20):2019-21.
    PMID: 23370051 DOI: 10.1039/c3cc39144b
    We developed a multiplex enzyme-based electrochemical genosensor for sequence-specific detection of multiplex linear-after-the-exponential-PCR amplicons that targeted toxigenic Vibrio cholerae O1 and O139 using novel screen-printed gold electrode bisensors.
    Matched MeSH terms: Gold/chemistry
  17. Sun RW, Zhang M, Li D, Zhang ZF, Cai H, Li M, et al.
    Chemistry, 2015 Dec 14;21(51):18534-8.
    PMID: 26459298 DOI: 10.1002/chem.201503656
    A dinuclear gold(I) pyrrolidinedithiocarbamato complex (1) with a bidentate carbene ligand has been constructed and shows potent in vitro cytotoxic activities towards cisplatin-resistant ovarian cancer cells A2780cis. Its rigid scaffold enables a zinc(II)-based metal-organic framework (Zn-MOF) to be used as a carrier in facilitating the uptake and release of 1 in solutions. Instead of using a conventional dialysis approach for the drug-release testing, in this study, a set of transwell assay-based experiments have been designed and employed to examine the cytotoxic and antimigratory activities of 1@Zn-MOF towards A2780cis.
    Matched MeSH terms: Gold/chemistry*
  18. Lintang HO, Kinbara K, Yamashita T, Aida T
    Chem Asian J, 2012 Sep;7(9):2068-72.
    PMID: 22431445 DOI: 10.1002/asia.201200041
    An organometallic/silica nanocomposite of a 1D cylindrical assembly of a trinuclear gold(I)-pyrazolate complex ([Au(3)Pz(3)]) that was confined inside the nanoscopic channels of hexagonal mesoporous silica ([Au(3)Pz(3)]/silica(hex)), emitted red light with a luminescence center at 693 nm upon photoexcitation at 276 nm owing to a Au(I)-Au(I) metallophilic interaction. When a film of [Au(3)Pz(3)]/silica(hex) was dipped into a solution of Ag(+) in tetrahydrofuran (THF), the resulting nanocomposite material (Ag@[Au(3)Pz(3)]/silica(hex)) emitted green light with a new luminescence center at 486 nm, which was characteristic of a Au(I)-Ag(I) heterometallic interaction. Changes in the emission/excitation and XPS spectra of Ag@[Au(3)Pz(3)]/silica(hex) revealed that Ag(+) ions permeated into the congested nanochannels of [Au(3)Pz(3)]/silica(hex), which were filled with the cylindrical assembly of [Au(3)Pz(3)].
    Matched MeSH terms: Gold/chemistry
  19. Yusof NS, Ashokkumar M
    Chemphyschem, 2015 Mar 16;16(4):775-81.
    PMID: 25598360 DOI: 10.1002/cphc.201402697
    The sonochemical synthesis of gold nanoparticles (GNPs) with different shapes and size distributions by using high-intensity focused ultrasound (HIFU) operating at 463 kHz is reported. GNP formation proceeds through the reduction of Au(3+) to Au(0) by radicals generated by acoustic cavitation. TEM images reveal that GNPs show irregular shapes at 30 W, are primarily icosahedral at 50 W and form a significant amount of nanorods at 70 W. The size of GNPs decreases with increasing acoustic power with a narrower size distribution. Sonochemiluminescence images help in the understanding of the effect of HIFU in controlling the size and shapes of GNPs. The number of radicals that form and the mechanical forces that are generated control the shape and size of the GNPs. UV/Vis spectra and TEM images are used to propose a possible mechanism for the observed effects. The results presented demonstrate, for the first time, that the HIFU system can be used to synthesise size- and shape-controlled metal nanoparticles.
    Matched MeSH terms: Gold/chemistry*
  20. Saw WS, Ujihara M, Chong WY, Voon SH, Imae T, Kiew LV, et al.
    Colloids Surf B Biointerfaces, 2018 Jan 01;161:365-374.
    PMID: 29101882 DOI: 10.1016/j.colsurfb.2017.10.064
    Physiochemical changes, including size, are known to affect gold nanoparticle cellular internalization and treatment efficacy. Here, we report the effect of four sizes of cystine/citric acid-coated confeito-like gold nanoparticles (confeito-AuNPs) (30, 60, 80 and 100nm) on cellular uptake, intracellular localization and photothermal anticancer treatment efficiency in MDA-MB231 breast cancer cells. Cellular uptake is size dependent with the smallest size of confeito-AuNPs (30nm) having the highest cellular internalization via clathrin- and caveolae-mediated endocytosis. However, the other three sizes (60, 80 and 100nm) utilize clathrin-mediated endocytosis for cellular uptake. The intracellular localization of confeito-AuNPs is related to their endocytosis mechanism, where all sizes of confeito-AuNPs were localized highly in the lysosome and mitochondria, while confeito-AuNPs (30nm) gave the highest localization in the endoplasmic reticulum. Similarly, a size-dependent trend was also observed in in vitro photothermal treatment experiments, with the smallest confeito-AuNPs (30nm) giving the highest cell killing rate, whereas the largest size of confeito-AuNPs (100nm) displayed the lowest photothermal efficacy. Its desirable physicochemical characteristics, biocompatible nature and better photothermal efficacy will form the basis for further development of multifunctional confeito-AuNP-based nanotherapeutic applications.
    Matched MeSH terms: Gold/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links