Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics
  2. Chee Wei T, Nurul Wahida AG, Shaharum S
    Trop Biomed, 2014 Dec;31(4):792-801.
    PMID: 25776606 MyJurnal
    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics*
  3. Wang J, Vijaykrishna D, Duan L, Bahl J, Zhang JX, Webster RG, et al.
    J Virol, 2008 Apr;82(7):3405-14.
    PMID: 18216109 DOI: 10.1128/JVI.02468-07
    The transmission of highly pathogenic avian influenza H5N1 virus to Southeast Asian countries triggered the first major outbreak and transmission wave in late 2003, accelerating the pandemic threat to the world. Due to the lack of influenza surveillance prior to these outbreaks, the genetic diversity and the transmission pathways of H5N1 viruses from this period remain undefined. To determine the possible source of the wave 1 H5N1 viruses, we recently conducted further sequencing and analysis of samples collected in live-poultry markets from Guangdong, Hunan, and Yunnan in southern China from 2001 to 2004. Phylogenetic analysis of the hemagglutinin and neuraminidase genes of 73 H5N1 isolates from this period revealed a greater genetic diversity in southern China than previously reported. Moreover, results show that eight viruses isolated from Yunnan in 2002 and 2003 were most closely related to the clade 1 virus sublineage from Vietnam, Thailand, and Malaysia, while two viruses from Hunan in 2002 and 2003 were most closely related to viruses from Indonesia (clade 2.1). Further phylogenetic analyses of the six internal genes showed that all 10 of those viruses maintained similar phylogenetic relationships as the surface genes. The 10 progenitor viruses were genotype Z and shared high similarity (>/=99%) with their corresponding descendant viruses in most gene segments. These results suggest a direct transmission link for H5N1 viruses between Yunnan and Vietnam and also between Hunan and Indonesia during 2002 and 2003. Poultry trade may be responsible for virus introduction to Vietnam, while the transmission route from Hunan to Indonesia remains unclear.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics
  4. Wang F, Gopinath SC, Lakshmipriya T
    Int J Nanomedicine, 2019;14:8469-8481.
    PMID: 31695375 DOI: 10.2147/IJN.S219976
    BACKGROUND: A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains.

    MATERIALS AND METHODS: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.

    RESULTS: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).

    CONCLUSION: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.

    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/metabolism
  5. Jazayeri SD, Ideris A, Zakaria Z, Yeap SK, Omar AR
    Comp Immunol Microbiol Infect Dis, 2012 Sep;35(5):417-27.
    PMID: 22512819 DOI: 10.1016/j.cimid.2012.03.007
    This study evaluates the immune responses of single avian influenza virus (AIV) HA DNA vaccine immunization using attenuated Salmonella enterica sv. Typhimurium as an oral vaccine carrier and intramuscular (IM) DNA injection. One-day-old specific-pathogen-free (SPF) chicks immunized once by oral gavage with 10(9) Salmonella colony-forming units containing plasmid expression vector encoding the HA gene of A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1.H5) did not show any clinical manifestations. Serum hemagglutination inhibition (HI) titer samples collected from the IM immunized chickens were low compared to those immunized with S. typhimurium.pcDNA3.1.H5. The highest average antibody titers were detected on day 35 post immunization for both IM and S. typhimurium.pcDNA3.1.H5 immunized groups, at 4.0±2.8 and 51.2±7.5, respectively. S. typhimurium.pcDNA3.1.H5 also elicited both CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells (PBMCs) of immunized chickens as early as day 14 after immunization, at 20.5±2.0 and 22.9±1.9%, respectively. Meanwhile, the CD4(+) and CD8(+) T cells in chickens vaccinated intramuscularly were low at 5.9±0.9 and 8.5±1.3%, respectively. Immunization of chickens with S. typhimurium.pcDNA3.1.H5 enhanced IL-1β, IL-12β, IL-15 and IL-18 expressions in spleen although no significant differences were recorded in chickens vaccinated via IM and orally with S. typhimurium and S. typhimurium.pcDNA3.1. Hence, single oral administrations of the attenuated S. typhimurium containing pcDNA3.1.H5 showed antibody, T cell and Th1-like cytokine responses against AIV in chickens. Whether the T cell response induced by vaccination is virus-specific and whether vaccination protects against AIV infection requires further study.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage; Hemagglutinin Glycoproteins, Influenza Virus/genetics; Hemagglutinin Glycoproteins, Influenza Virus/immunology*
  6. Horm SV, Mardy S, Rith S, Ly S, Heng S, Vong S, et al.
    PLoS One, 2014;9(10):e110713.
    PMID: 25340711 DOI: 10.1371/journal.pone.0110713
    BACKGROUND: The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011.

    METHODOLOGY/PRINCIPAL FINDINGS: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade.

    CONCLUSIONS/SIGNIFICANCE: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective.

    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics
  7. Baxter R, Patriarca PA, Ensor K, Izikson R, Goldenthal KL, Cox MM
    Vaccine, 2011 Mar 9;29(12):2272-8.
    PMID: 21277410 DOI: 10.1016/j.vaccine.2011.01.039
    Alternative methods for influenza vaccine production are needed to ensure adequate supplies.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/immunology*
  8. Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F
    Viral Immunol, 2016 05;29(4):198-211.
    PMID: 26900835 DOI: 10.1089/vim.2015.0127
    Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/blood
  9. Blyth CC, Foo H, van Hal SJ, Hurt AC, Barr IG, McPhie K, et al.
    Emerg Infect Dis, 2010 May;16(5):809-15.
    PMID: 20409371 DOI: 10.3201/eid1605.091136
    Influenza outbreaks during mass gatherings have been rarely described, and detailed virologic assessment is lacking. An influenza outbreak occurred during World Youth Day in Sydney, Australia, July 2008 (WYD2008). We assessed epidemiologic data and respiratory samples collected from attendees who sought treatment for influenza-like illness at emergency clinics in Sydney during this outbreak. Isolated influenza viruses were compared with seasonal influenza viruses from the 2008 influenza season. From 100 infected attendees, numerous strains were identified: oseltamivir-resistant influenza A (H1N1) viruses, oseltamivir-sensitive influenza A (H1N1) viruses, influenza A (H3N2) viruses, and strains from both influenza B lineages (B/Florida/4/2006-like and B/Malaysia/2506/2004-like). Novel viruses were introduced, and pre-WYD2008 seasonal viruses were amplified. Viruses isolated at mass gatherings can have substantial, complex, and unpredictable effects on community influenza activity. Greater flexibility by public health authorities and hospitals is required to appropriately manage and contain these outbreaks.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics
  10. Skowronski DM, De Serres G, Dickinson J, Petric M, Mak A, Fonseca K, et al.
    J Infect Dis, 2009 Jan 15;199(2):168-79.
    PMID: 19086914 DOI: 10.1086/595862
    Trivalent inactivated influenza vaccine (TIV) is reformulated annually to contain representative strains of 2 influenza A subtypes (H1N1 and H3N2) and 1 B lineage (Yamagata or Victoria). We describe a sentinel surveillance approach to link influenza variant detection with component-specific vaccine effectiveness (VE) estimation.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics; Hemagglutinin Glycoproteins, Influenza Virus/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links