METHODS: All surgeries were performed by minimally invasive technique with either percutaneous monoaxial or percutaneous polyaxial screws inserted at adjacent fracture levels perpendicular to both superior end plates. Fracture reduction is achieved with adequate rod contouring and distraction maneuver. Radiological parameters were measured during preoperation, postoperation, and follow-up.
RESULTS: A total of 21 patients were included. Eleven patients were performed with monoaxial pedicle screws and 10 patients performed with polyaxial pedicle screws. Based on AO thoracolumbar classification system, 10 patients in the monoaxial group had A3 fracture type and 1 had A4. In the polyaxial group, six patients had A3 and four patients had A4. Total correction of anterior vertebral height (AVH) ratio was 0.30 ± 0.10 and 0.08 ± 0.07 in monoaxial and polyaxial groups, respectively (p < 0.001). Total correction of posterior vertebral height (PVH) ratio was 0.11 ± 0.05 and 0.02 ± 0.02 in monoaxial and polyaxial groups, respectively (p < 0.001). Monoaxial group achieved more correction of 13° (62.6%) in local kyphotic angle compared to 8.2° (48.0%) in polyaxial group. Similarly, in regional kyphotic angle, 16.5° (103.1%) in the monoaxial group and 8.1° (76.4%) in the polyaxial group were achieved.
CONCLUSIONS: Monoaxial percutaneous pedicle screws inserted at adjacent fracture levels provided significantly better fracture reduction compared to polyaxial screws in thoracolumbar fractures.
OBJECTIVE: This study aimed to assess the radiological and clinical outcome of patients with Lenke 1C and 2C curves treated with STF.
STUDY DESIGN: This is a retrospective study.
PATIENT SAMPLE: A total of 44 patients comprised the study sample.
METHODS: Forty-four patients with Lenke 1C and 2C curves with adolescent idiopathic scoliosis who underwent STF were reviewed. Radiological parameters and Scoliosis Research Society (SRS)-22r scores were assessed preoperatively, postoperatively, and on final follow-up. The incidence of coronal decompensation, lumbar decompensation, and adding-on phenomenon were reported.
RESULTS: Mean follow-up duration was 45.1±12.3 months and mean age was 17.0±5.1 years. The preoperative middle thoracic and thoracolumbar/lumbar (MT:TL/L) Cobb angle ratio was 1.4±0.3 and the MT:TL/L apical vertebra translation (AVT) ratio was 1.6±0.8. Final follow-up coronal balance was -13.0±11.5 mm, main thoracic AVT was 6.9±11.8 mm, and lumbar AVT was -20.4±13.8 mm (pLumbar Cobb angle improved from 47.5°±7.8° to 24.9°±8.2° after operation and 23.3°±9.8° at final follow-up. The spontaneous lumbar curve correction rate was 50.9%. There were 9 patients (20.5%) who had coronal decompensation, 4 patients (9.1%) who had lumbar decompensation, and 11 patients (25.0%) who had adding-on phenomenon. We did not perform any revision surgery. The SRS-22r scores improved significantly in the overall scores, self-image, and mental health domain.
CONCLUSIONS: Selective thoracic fusion led to improvement in the radiological and clinical outcome for patients with Lenke 1C and 2C. Although no patients required revision surgery, the rate of coronal decompensation, lumbar decompensation, and adding-on phenomenon are significant.
METHODS: Six porcine lumbar spines (L2-L5) were separated into 12 functional spine units. Bilateral total facetectomies and interlaminar decompression were performed for all specimens. Non-destructive loading to assess stiffness in lateral bending, flexion and extension as well as axial rotation was performed using a universal material testing machine.
RESULTS: PS and CS constructs were significantly stiffer than the intact spine except in axial rotation. Using the normalized ratio to the intact spine, there is no significant difference between the stiffness of PS and CS: flexion (1.41 ± 0.27, 1.55 ± 0.32), extension (1.98 ± 0.49, 2.25 ± 0.44), right lateral flexion (1.93 ± 0.57, 1.55 ± 0.30), left lateral flexion (2.00 ± 0.73, 2.16 ± 0.20), right axial rotation (0.99 ± 0.21, 0.83 ± 0.26) and left axial rotation (0.96 ± 0.22, 0.92 ± 0.25).
CONCLUSION: The CS-rod TLIF construct provided comparable construct stiffness to a traditional PS-rod TLIF construct in a 'standardized' porcine lumbar spine model.
METHODS: The authors reviewed data from the Adult Symptomatic Lumbar Scoliosis 1 trial (ASLS-1), a National Institutes of Health-sponsored prospective multicenter study. Inclusion criteria were an age ≥ 40 years, ASLS (Cobb angle ≥ 30° and Oswestry Disability Index [ODI] ≥ 20 or Scoliosis Research Society revised 22-item questionnaire [SRS-22r] score ≤ 4.0 in pain, function, or self-image domains), and primary thoracolumbar fusion/fixation to the sacrum/pelvis of ≥ 7 levels. PJF was defined as a postoperative proximal junctional angle (PJA) change > 20°, fracture of the uppermost instrumented vertebra (UIV) or UIV+1 with > 20% vertebral height loss, spondylolisthesis of UIV/UIV+1 > 3 mm, or UIV screw dislodgment.
RESULTS: One hundred sixty patients (141 women) were included in this analysis and had a median age of 62 years and a mean follow-up of 4.3 years (range 0.1-6.1 years). Forty-six patients (28.8%) had PJF at a median of 0.92 years (IQR 0.14, 1.23 years) following surgery. Based on Kaplan-Meier analyses, PJF rates at 1, 2, 3, and 4 years were 14.4%, 21.9%, 25.9%, and 27.4%, respectively. On univariate analysis, PJF was associated with greater age (p = 0.0316), greater body mass index (BMI; p = 0.0319), worse baseline patient-reported outcome measures (PROMs; ODI, SRS-22r, and SF-12 Physical Component Summary [PCS]; all p < 0.04), the use of posterior column osteotomies (PCOs; p = 0.0039), and greater postoperative thoracic kyphosis (TK; p = 0.0031) and PJA (p < 0.001). The use of UIV hooks was protective against PJF (p = 0.0340). On regression analysis (without postoperative measures), PJF was associated with greater BMI (HR 1.077, 95% CI 1.007-1.153, p = 0.0317), lower preoperative PJA (HR 0.607, 95% CI 0.407-0.906, p = 0.0146), and greater preoperative TK (HR 1.362, 95% CI 1.082-1.715, p = 0.0085). Patients with PJF had worse PROMs at the last follow-up (ODI, SRS-22r subscore and self-image, and SF-12 PCS; p < 0.04). Sixteen PJF patients (34.8%) underwent revision, and PJF recurred in 3 (18.8%).
CONCLUSIONS: Among 160 primary ASLS patients with a median age of 62 years and predominant coronal deformity, the PJF rate was 28.8% at a mean 4.3-year follow-up, with a revision rate of 34.8%. On univariate analysis, PJF was associated with a greater age and BMI, worse baseline PROMs, the use of PCOs, and greater postoperative TK and PJA. The use of UIV hooks was protective against PJF. On multivariate analysis (without postoperative measures), a higher risk of PJF was associated with greater BMI and preoperative TK and lower preoperative PJA.