Displaying publications 21 - 40 of 322 in total

Abstract:
Sort:
  1. Pushparajah V, Fatima A, Chong CH, Gambule TZ, Chan CJ, Ng ST, et al.
    Sci Rep, 2016 07 27;6:30010.
    PMID: 27460640 DOI: 10.1038/srep30010
    Lignosus rhinocerotis (Tiger milk mushroom) is an important folk medicine for indigenous peoples in Southeast Asia. We previously reported its de novo assembled 34.3 Mb genome encoding a repertoire of proteins including a putative bioactive fungal immunomodulatory protein. Here we report the cDNA of this new member (FIP-Lrh) with a homology range of 54-64% to FIPs from other mushroom species, the closest is with FIP-glu (LZ-8) (64%) from Ganoderma lucidum. The FIP-Lrh of 112 amino acids (12.59 kDa) has a relatively hydrophobic N-terminal. Its predicted 3-dimensional model has identical folding patterns to FIP-fve and contains a partially conserved and more positively charged carbohydrates binding pocket. Docking predictions of FIP-Lrh on 14 glycans commonly found on cellular surfaces showed the best binding energy of -3.98 kcal/mol to N-acetylgalactosamine and N-acetylglucosamine. Overexpression of a 14.9 kDa soluble 6xHisFIP-Lrh was achieved in pET-28a(+)/BL21 and the purified recombinant protein was sequence verified by LC-MS/MS (QTOF) analysis. The ability to haemagglutinate both mouse and human blood at concentration ≥0.34 μM, further demonstrated its lectin nature. In addition, the cytotoxic effect of 6xHisFIP-Lrh on MCF-7, HeLa and A549 cancer cell lines was detected at IC50 of 0.34 μM, 0.58 μM and 0.60 μM, respectively.
    Matched MeSH terms: MCF-7 Cells
  2. Ramli MM, Rosman AS, Mazlan NS, Ahmad MF, Halin DSC, Mohamed R, et al.
    Sci Rep, 2021 10 19;11(1):20702.
    PMID: 34667216 DOI: 10.1038/s41598-021-00171-3
    Breast cancer is one of the most reported cancers that can lead to death. Despite the advances in diagnosis and treatment procedures, the possibility of cancer recurrences is still high in many cases. With that in consideration, researchers from all over the world are showing interest in the unique features of Graphene oxide (GO), such as its excellent and versatile physicochemical properties, to explore further its potential and benefits towards breast cancer cell treatment. In this study, the cell viability and electrical response of GO, in terms of resistivity and impedance towards the breast cancer cells (MCF7) and normal breast cells (MCF10a), were investigated by varying the pH and concentration of GO. Firstly, the numbers of MCF7 and MCF10a were measured after being treated with GO for 24 and 48 h. Next, the electrical responses of these cells were evaluated by using interdigitated gold electrodes (IDEs) that are connected to an LCR meter. Based on the results obtained, as the pH of GO increased from pH 5 to pH 7, the number of viable MCF7 cells decreased while the number of viable MCF10a slightly increased after the incubation period of 48 h. Similarly, the MCF7 also experienced higher cytotoxicity effects when treated with GO concentrations of more than 25 µg/mL. The findings from the electrical characterization of the cells observed that the number of viable cells has corresponded to the impedance of the cells. The electrical impedance of MCF7 decreased as the number of highly insulating viable cell membranes decreased. But in contrast, the electrical impedance of MCF10a increased as the number of highly insulating viable cell membranes increased. Hence, it can be deduced that the GO with higher pH and concentration influence the MCF7 cancer cell line and MCF10a normal breast cell.
    Matched MeSH terms: MCF-7 Cells
  3. Ibnat N, Chowdhury EH
    Sci Rep, 2023 Jan 11;13(1):536.
    PMID: 36631481 DOI: 10.1038/s41598-022-25511-9
    Gene augmentation therapy entails replacement of the abnormal tumor suppressor genes in cancer cells. In this study, we performed gene augmentation for BRCA1/2 tumor suppressors in order to retard tumor development in breast cancer mouse model. We formulated inorganic carbonate apatite (CA) nanoparticles (NPs) to carry and deliver the purified BRCA1/2 gene- bearing plasmid DNA both in vitro and in vivo. The outcome of BRCA1/2 plasmid-loaded NPs delivery on cellular viability of three breast cancer cell lines such as MCF-7, MDA-MB-231 and 4T1 were evaluated by MTT assay. The result in MCF-7 cell line exhibited that transfection of BRCA 1/2 plasmids with CA NPs significantly reduced cancer cell growth in comparison to control group. Moreover, we noticed a likely pattern of cellular cytotoxicity in 4T1 murine cancer cell line. Following transfection with BRCA1 plasmid-loaded NPs, and Western blot analysis, a notable reduction in the phospho-MAPK protein of MAPK signaling pathway was detected, revealing reduced growth signal. Furthermore, in vivo study in 4T1 induced breast cancer mouse model showed that the tumor growth rate and final volume were decreased significantly in the mouse group treated intravenously with BRCA1 + NPs and BRCA2 + NPs formulations. Our results established that BRCA1/2 plasmids incorporated into CA NPs mitigated breast tumor growth, signifying their application in the therapy for breast cancer.
    Matched MeSH terms: MCF-7 Cells
  4. Abdel-Sattar OE, Allam RM, Al-Abd AM, Avula B, Katragunta K, Khan IA, et al.
    Sci Rep, 2023 Feb 15;13(1):2683.
    PMID: 36792619 DOI: 10.1038/s41598-023-29566-0
    The members of the genus Phyllanthus have long been used in the treatment of a broad spectrum of diseases. They exhibited antiproliferative activity against various human cancer cell lines. Breast cancer is the most diagnosed cancer and a leading cause of cancer death among women. Doxorubicin (DOX) is an anticancer agent used to treat breast cancer despite its significant cardiotoxicity along with resistance development. Therefore, this study was designed to assess the potential cytotoxicity of P. niruri extracts (and fractions) alone and in combination with DOX against naïve (MCF-7) and doxorubicin-resistant breast cancer cell lines (MCF-7ADR). The methylene chloride fraction (CH2Cl2) showed the most cytotoxic activity among all tested fractions. Interestingly, the CH2Cl2-fraction was more cytotoxic against MCF-7ADR than MCF-7 at 100 µg/mL. At sub-cytotoxic concentrations, this fraction enhanced the cytotoxic effect of DOX against the both cell lines under investigation (IC50 values of 0.054 µg/mL and 0.14 µg/mL vs. 0.2 µg/mL for DOX alone against MCF-7) and (1.2 µg/mL and 0.23 µg/mL vs. 9.9 µg/mL for DOX alone against MCF-7ADR), respectively. Further, TLC fractionation showed that B2 subfraction in equitoxic combination with DOX exerted a powerful synergism (IC50 values of 0.03 µg/mL vs. 9.9 µg/mL for DOX alone) within MCF-7ADR. Untargeted metabolite profiling of the crude methanolic extract (MeOH) and CH2Cl2 fraction exhibiting potential cytotoxicity was conducted using liquid chromatography diode array detector-quadrupole time-of-flight mass spectrometry (LC-DAD-QTOF). Further studies are needed to separate the active compounds from the CH2Cl2 fraction and elucidate their mechanism(s) of action.
    Matched MeSH terms: MCF-7 Cells
  5. Darmadi J, Batubara RR, Himawan S, Azizah NN, Audah HK, Arsianti A, et al.
    Sci Rep, 2021 Mar 16;11(1):6080.
    PMID: 33727582 DOI: 10.1038/s41598-021-85383-3
    Local Xylocarpus granatum leaves were extracted by ethyl acetate solvent and characterized by TLC fingerprinting and 2D 1H NMR spectroscopy to contain phenolic compounds as well as several organic and amino acids as metabolic byproducts, such as succinic acid and acetic acid. Traces of flavonoids and other non-categorized phenolic compounds exhibited intermediate antioxidant activity (antioxidant IC50 84.93 ppm) as well as anticancer activity against HeLa, T47D, and HT-29 cell lines; which the latter being most effective against HT-29 with Fraction 5 contained the strongest activity (anticancer IC50 23.12 ppm). Extracts also behaved as a natural growth factor and nonlethal towards brine shrimps as well as human adipose-derived stem cell hADSC due to antioxidative properties. A stability test was performed to examine how storage conditions factored in bioactivity and phytochemical structure. Extracts were compared with several studies about X. granatum leaves extracts to evaluate how ethnogeography and ecosystem factored on biologically active compounds. Further research on anticancer or antioxidant mechanism on cancer cells is needed to determine whether the extract is suitable as a candidate for an anticancer drug.
    Matched MeSH terms: MCF-7 Cells
  6. Hassan F, El-Hiti GA, Abd-Allateef M, Yousif E
    Saudi Med J, 2017 Apr;38(4):359-365.
    PMID: 28397941 DOI: 10.15537/smj.2017.4.17061
    OBJECTIVES: To investigate the cytotoxic effect of anastrozole on breast (MCF7), liver hepatocellular (HepG2), and prostate (PC3) cancer cells. Methods: This is a prospective study. Anastrozole's mechanism of apoptosis in living cells was also determined by high content screening (HCS) assay. Methylthiazol tetrazolium (MTT) assay was carried out at the Centre of Biotechnology Research's, Al-Nahrain University, Baghdad, Iraq between July 2015 and October 2015. The HCS assay was performed at the Centre for Natural Product Research  and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia between November 2015 and February 2016. Results: The most significant cytotoxic effect of anastrozole towards 3 cancer cell lines was obtained when its concentration was 400 µg/mL. The MCF7 cells were more sensitive to anastrozole compared with the HepG2 and PC-3 cells. There was a significant increase in membrane permeability, cytochrome c and nuclear intensity when anastrozole (200 µg/mL) was used compared with doxorubicin (20 µg/mL) as a standard. Also, there was a significant decrease in cell viability and mitochondrial membrane permeability when anastrozole (200 µg/mL) was used compared with positive control. Conclusion: Anastrozole showed cytotoxic effects against the MCF7, HepG2, and PC3 cell lines as determined in-vitro by the MTT assay. The HCS technique also showed toxic effect towards MCF7. It is evident that anastrozole inhibits the aromatase enzyme preventing the aromatization mechanism; however, it has a toxic effect.
    Matched MeSH terms: MCF-7 Cells
  7. Dahham SS, Al-Rawi SS, Ibrahim AH, Abdul Majid AS, Abdul Majid AMS
    Saudi J Biol Sci, 2018 Dec;25(8):1524-1534.
    PMID: 30591773 DOI: 10.1016/j.sjbs.2016.01.031
    Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p 
    Matched MeSH terms: MCF-7 Cells
  8. Teo GY, Rasedee A, Al-Haj NA, Beh CY, How CW, Rahman HS, et al.
    Saudi J Biol Sci, 2020 Feb;27(2):653-658.
    PMID: 32210684 DOI: 10.1016/j.sjbs.2019.11.032
    Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.
    Matched MeSH terms: MCF-7 Cells
  9. Siti P.M. Bohari, Hamidreza Aboulkheyr E, Nur S. Johan, Nursyuhada F. Zainudin
    Sains Malaysiana, 2017;46:575-581.
    According to the World Cancer Research Fund International (WCRFI), breast cancer is the most common type of cancer in women worldwide with recorded 1.7 million new cases in 2012. The main line of treatments is still limited to chemotherapy, surgery and radiotherapy which could lead to a wide range of dangerous side effects. This study was conducted to evaluate the effect of low intensity ultrasound (LIUS) on cell proliferation, percentage of living and dead cells and the induction of apoptosis on the MCF-7 cell line with CHO cells as the control for non-cancerous group. In order to achieve the objective of this study, several methods of cell-bioguided assays were used including the MTT assay for cell proliferation, Live/Dead assay for the determination of both live and dead cells and gene expression study for the detection of apoptosis in the cells. The cytotoxicity and Live/Dead assays data provided preliminary data that the LIUS has potential to induce apoptosis in a wide population of breast cancer cells. Furthermore, the LIUS treatment induced the expression of p53-mRNA at a detectable level via qPCR analysis, indicating the activation of apoptosis. In short, our study suggested LIUS dosage used in this study could potentially show positive effects in the induction of apoptosis selectively on the MCF-7 with less harm to the control CHO cells.
    Matched MeSH terms: MCF-7 Cells
  10. Li X, Peng B, Li J, Tian M, He L
    Protein Pept Lett, 2023;30(12):992-1000.
    PMID: 38013437 DOI: 10.2174/0109298665245603231106050224
    OBJECTIVES: We aim to investigate the regulatory mechanisms of miR-455-5p/SOCS3 pathway that underlie the proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells.

    METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-455-5p expression in breast cancer tissues and cell lines. CCK8 and Transwell assays were conducted to assess the effects of miR-455-5p on breast cancer line proliferation, migration, and invasion. SOCS3 expression level in breast cancer tissues and cell lines was determined by qPCR and western blotting. The targeting relationship between miR-455-5p and SOCS3 was determined by dual luciferase reporter gene assay in different breast cancer cell lines. Finally, the upstream and downstream regulatory association between miR-455-5p and SOCS3 was confirmed in breast cancer cells by CCK8, western blot, and Transwell assays.

    RESULTS: MiR-455-5p expression was up-regulated in breast cancer tissues; miR-455-5p regulates TNBC proliferation, migration, and invasion of TNBC. SOCS3 was the direct target of miR-455-5p and was down-regulated in breast cancer. Interference with SOCS3 reversed the inhibitory effect of the miR-455-5p inhibitor on breast cancer cells' malignant potential.

    CONCLUSION: MiR-455-5p promotes breast cancer progression by targeting the SOCS3 pathway and may be a potential therapeutic target for breast cancer.

    Matched MeSH terms: MCF-7 Cells
  11. Rad SK, Kanthimathi MS, Abd Malek SN, Lee GS, Looi CY, Wong WF
    PLoS One, 2015;10(12):e0145216.
    PMID: 26700476 DOI: 10.1371/journal.pone.0145216
    BACKGROUND: Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated.

    METHODOLOGY/PRINCIPAL FINDINGS: The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34 ± 3.52 and 32.42 ± 0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia).

    CONCLUSION: Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.

    Matched MeSH terms: MCF-7 Cells
  12. Lau BF, Abdullah N, Aminudin N, Lee HB, Yap KC, Sabaratnam V
    PLoS One, 2014;9(7):e102509.
    PMID: 25054862 DOI: 10.1371/journal.pone.0102509
    Previous studies on the nutritional and nutraceutical properties of Lignosus rhinocerotis focused mainly on the sclerotium; however, the supply of wild sclerotium is limited. In this investigation, the antioxidant capacity and cytotoxic effect of L. rhinocerotis cultured under different conditions of liquid fermentation (shaken and static) were compared to the sclerotium produced by solid-substrate fermentation. Aqueous methanol extracts of the mycelium (LR-MH, LR-MT) and culture broth (LR-BH, LR-BT) demonstrated either higher or comparable antioxidant capacities to the sclerotium extract (LR-SC) based on their radical scavenging abilities, reducing properties, metal chelating activities, and inhibitory effects on lipid peroxidation. All extracts exerted low cytotoxicity (IC50>200 µg/ml, 72 h) against selected mammalian cell lines. Several low-molecular-weight compounds, including sugars, fatty acids, methyl esters, sterols, amides, amino acids, phenolics, and triterpenoids, were identified using GC-MS and UHPLC-ESI-MS/MS. The presence of proteins (<40 kDa) in the extracts was confirmed by SDS-PAGE and SELDI-TOF-MS. Principal component analysis revealed that the chemical profiles of the mycelial extracts under shaken and static conditions were distinct from those of the sclerotium. Results from bioactivity evaluation and chemical profiling showed that L. rhinocerotis from liquid fermentation merits consideration as an alternative source of functional ingredients and potential substitute for the sclerotium.
    Matched MeSH terms: MCF-7 Cells
  13. Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB
    PLoS One, 2012;7(9):e44640.
    PMID: 22970274 DOI: 10.1371/journal.pone.0044640
    In comparison to monolayer cells, MCTS has been claimed as more suitable candidate for studying drug penetration due to the high resemblance to solid tumors. However, the cultivation of MCTS is cumbersome, time consuming, and most technique fail to generate spheroids with uniform sizes. Therefore, the application of spheroid cultures in high throughput screening has been rather limiting. Besides, the lack of a well established screening protocol method that is applicable to spheroid could also be attributed to this limitation. Here we report a simple way of cultivating homogenous MCTS cultures with compact and rigid structure from the MCF-7 cells. Besides, we had also made some modifications to the standard MTT assay to realize high throughput screening of these spheroids. Using the modified protocol, tamoxifen showed cytotoxicity effect towards MCTS cultures from MCF-7 with high consistency. The results correlated well with the cultures' response assessed by LDH release assay but the latter assay was not ideal for detecting a wide range of cytotoxicity due to high basal background reading. The MTT assay emerged as a better indicator to apoptosis event in comparison to the LDH release assay. Therefore, the method for spheroid generation and the modified MTT assay we reported here could be potentially applied to high throughput screening for response of spheroid cultures generated from MCF-7 as well as other cancer cell lines towards cytotoxic stimuli.
    Matched MeSH terms: MCF-7 Cells
  14. Looi CY, Arya A, Cheah FK, Muharram B, Leong KH, Mohamad K, et al.
    PLoS One, 2013;8(2):e56643.
    PMID: 23437193 DOI: 10.1371/journal.pone.0056643
    Centratherum anthelminticum (L.) seeds (CA) is a well known medicinal herb in Indian sub-continent. We recently reported anti-oxidant property of chloroform fraction of Centratherum anthelminticum (L.) seeds (CACF) by inhibiting tumor necrosis factor-α (TNF-α)-induced growth of human breast cancer cells. However, the active compounds in CACF have not been investigated previously.
    Matched MeSH terms: MCF-7 Cells
  15. Rothan HA, Ambikabothy J, Abdulrahman AY, Bahrani H, Golpich M, Amini E, et al.
    PLoS One, 2015;10(9):e0139248.
    PMID: 26418816 DOI: 10.1371/journal.pone.0139248
    The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent.
    Matched MeSH terms: MCF-7 Cells
  16. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: MCF-7 Cells
  17. Karimian H, Fadaeinasab M, Zorofchian Moghadamtousi S, Hajrezaei M, Razavi M, Safi SZ, et al.
    PLoS One, 2015;10(5):e0127434.
    PMID: 25996383 DOI: 10.1371/journal.pone.0127434
    Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.
    Matched MeSH terms: MCF-7 Cells
  18. Taha H, Looi CY, Arya A, Wong WF, Yap LF, Hasanpourghadi M, et al.
    PLoS One, 2015;10(5):e0126126.
    PMID: 25946039 DOI: 10.1371/journal.pone.0126126
    Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.
    Matched MeSH terms: MCF-7 Cells
  19. Beh CY, Rasedee A, Selvarajah GT, Yazan LS, Omar AR, Foong JN, et al.
    PLoS One, 2019;14(7):e0219285.
    PMID: 31291309 DOI: 10.1371/journal.pone.0219285
    Nanomedicine is an emerging area in the medical field, particularly in the treatment of cancers. Nanostructured lipid carrier (NLC) was shown to be a good nanoparticulated carrier for the delivery of tamoxifen (TAM). In this study, the tamoxifen-loaded erythropoietin-coated nanostructured lipid carriers (EPO-TAMNLC) were developed to enhance the anti-cancer properties and targetability of TAM, using EPO as the homing ligand for EPO receptors (EpoRs) on breast cancer tissue cells. Tamoxifen-loaded NLC (TAMNLC) was used for comparison. The LA7 cells and LA7 cell-induced rat mammary gland tumor were used as models in the study. Immunocytochemistry staining showed that LA7 cells express estrogen receptors (ERs) and EpoRs. EPO-TAMNLC and TAMNLC significantly (p<0.05) inhibited proliferation of LA7 in dose- and time-dependent manner. EPO-TAMNLC induced apoptosis and G0/G1 cell cycle arrest of LA7 cells. Both drug delivery systems showed anti-mammary gland tumor properties. At an intravenous dose of 5 mg kg-1 body weight, EPO-TAMNLC and TAMNLC were not toxic to rats, suggesting that both are safe therapeutic compounds. In conclusion, EPO-TAMNLC is not only a unique drug delivery system because of the dual drug-loading feature, but also potentially highly specific in the targeting of breast cancer tissues positive for ERs and EpoRs. The incorporation of TAM into NLC with and without EPO coat had significantly (p<0.05) improved specificity and safety of the drug carriers in the treatment of mammary gland tumors.
    Matched MeSH terms: MCF-7 Cells
  20. Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S
    PLoS One, 2020;15(12):e0244386.
    PMID: 33347482 DOI: 10.1371/journal.pone.0244386
    CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
    Matched MeSH terms: MCF-7 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links