This study aimed to synthesize the existing evidence on the efficacy and safety of a single dose artemisinin-naphthoquine (ASNQ) for treatment of uncomplicated malaria in endemic countries.
K1 strain of Plasmdoium falciparum is resistant in vitro to chloroquine, pyrimethamine and sulfadoxine. Response of this strain to combinations of antimalarial drugs in the in vitro hypoxanthine incorporation test was coupled with that of a line of strain NF54 relatively sensitive to chloroquine and fully sensitive to other antimalarials. Pyrimethamine and sulfadoxine showed potentiative synergism against NF54 and less marked against K1. Erythromycin and chloroquine showed potentiation, but less marked against NF54. Quinine and clindamycin had an additive effect against NF54 but potentiated against K1. Combinations of chloroquine with quinine or amodiaquine or of amodiaquine with clindamycin or erythromycin showed mild antagonistic or additive effects. In vivo studies in mice, using the 4-day suppressive test, the AS(3CQ) clone of Plasmodium chabaudi was resistant to pyrimethamine and chloroquine but sensitive to sulfadoxine. Similar combinations as above were carried out and their responses were compared between the resistant and sensitive strains. For both strains, the combinations of chloroquine-erythromycin, pyrimethamine-sulfadoxine, quinine-clindamycin showed potentiation; antagonistic effects were observed in chloroquine-amodiaquine combinations whereas when amodiaquine combined with erythromycin the effect was additive. Amodiaquine-clindamycin and chloroquine-quinine combinations have an antagonistic effect against the sensitive strain but additive against the resistant strain.
The status of P. falciparum resistance to chloroquine in Sabah, Malaysia were not know until 1971-1972. Several in-vivo and on in-vivo studies were conducted from 971-1975, and the result showed 51% out of total 57 cases studied were resistant to chloroquine. The latest in-vitro study (collaborative with WHO) started in July 1978, to continue till 1980, to cover the whole State. The preliminary result shows 65 cases (85%) out of a total 76 successful tests are resistant to chloroquine. On the basis of this preliminary result, the radical treatment for P. falciparum infection was changed from chloroquine to Fansidar from June 1979 throughout the State.
A case of Plasmodium falciparum malaria resistant to Fansidar (sulphadoxine plus pyrimethamine) at a level corresponding to R III and resistant to chloroquine is reported. The infection was most certainly acquired in Malaysia, but diagnosed and treated in a non-malarious area. Normal resorption and elimination rates of the Fansidar components excludes cure failure due to abnormal drug fate in the host. P. falciparum parasites from the patient have been maintained in vitro cultures. The patient was permanently cured with mefloquine.
Doxycycline in a single dose was found to be a valuable drug in the treatment of chloroquine-resistant falciparum malaria. It was less effective in a single daily dose of 4 mg/kg body-weight for four days, when it cured only five out of nine patients, while a dosage of 4 mg/kg body-weight for seven days cured 23 out of 26 patients.
Gonadectomized male mice aged 5 weeks were given 5 mg testosterone propionate daily for 14 days. The treatment significantly decreased the number of blood leukocytes. The number of all individual types of leukocytes except basophils in vehicle-treated gonadectomized mice was increased. Testosterone-treated mice consistently had a lower number of leukocytes after being infected with Plasmodium berghei than did vehicle-treated mice. The results suggest that testosterone suppresses the production of leukocytes and that testosterone-treated mice become more susceptible to parasite infection.
A high-performance liquid chromatographic method was developed to enable dapsone, monoacetyl dapsone and pyrimethamine to be measured simultaneously in plasma samples from volunteers in England and Malaysia who had been dosed with Maloprim. Mean half-lives of 25 and 80 h were calculated for dapsone and pyrimethamine, respectively, but there was wide individual variation. All subjects were found to be classifiable as "slow acetylators".
Chloroquine (CQ)-resistant Plasmodium falciparum appears to decrease CQ accumulation in its food vacuole by enhancing its efflux via an active membrane pump, which has been reported to be a P-glycoprotein-like transporter. Rifampicin (RIF) is a P-glycoprotein inhibitor and also has some antimalarial activity. It is hoped that a combination of choloroquine-rifampicin (CQ + RIF) would be advantageous in the treatment of CQ-resistant malaria. Swiss albino mice were inoculated with CQ-resistant P. berghei intraperitoneally, and studied for the effect of CQ versus the combination of CQ + RIF at various doses on the clearance of parasitemia, the survival of the mice, and the recrudescence of malaria. Paradoxically, RIF decreased the survival rate and rate of clearance of parasitemia and increased the rate of recrudescence significantly when combined with various doses of CQ. Our results indicated that RIF worsened the course of the disease, and we concluded that RIF should not be combined with CQ in the treatment of malaria.
Malaria is a parasitic disease that is caused by the Plasmodium parasite. Worldwide, it remains a significant public health problem especially in the Africa region where it contributes to more than 90% of cases and malaria death. However, zoonotic (simian) Plasmodium knowlesi parasite is a widely prevalent cause of malaria in the South East Asian countries. It is known to cause severe human disease due to its 24hour erythrocytic cycles. Thus far, cases of severe falciparum malaria have been reported in asplenic patients. Here, we report a case of severe P.knowlesi malaria in a 51-year-old man who is a postsplenectomy patient.
The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using established population compartmental pharmacokinetic models. Parasite clearance was prompt (median parasite clearance time, 24 h), and there were no serious adverse events. Consistent with studies in healthy adults (S. Salman, D. Bendel, T. C. Lee, D. Templeton, and T. M. E. Davis, Antimicrob Agents Chemother 59:3197-3207, 2015, http://dx.doi.org/10.1128/AAC.05013-14), the absorption of sublingual artemether was biphasic, and multiple dosing was associated with the autoinduction of the metabolism of artemether to DHA (which itself has potent antimalarial activity). In contrast to studies using healthy volunteers, pharmacokinetic modeling indicated that the first absorption phase did not avoid first-pass metabolism, suggesting that the drug is transferred to the upper intestine through postdose fluid/food intake. Simulations using the present data and those from an earlier study in older Melanesian children with uncomplicated malaria treated with artemether-lumefantrine tablets suggested that the bioavailability of sublingual artemether was at least equivalent to that after conventional oral artemether-lumefantrine (median [interquartile range] areas under the concentration-time curve for artemether, 3,403 [2,471 to 4,771] versus 3,063 [2,358 to 4,514] μg · h/liter, respectively; and for DHA, 2,958 [2,146 to 4,278] versus 2,839 [1,812 to 3,488] μg · h/liter, respectively; P ≥ 0.42). These findings suggest that sublingual artemether could be used as prereferral treatment for sick children before transfer for definitive management of severe or moderately severe malaria.
The present review aimed to synthesise available evidence on the efficacy of dihydroartemisinin-piperaquine (DP) in treating uncomplicated Plasmodium falciparum malaria in people living in malaria-endemic countries by performing a meta-analysis of relevant studies. We searched relevant studies in electronic data bases up to December 2011. Published results from randomised controlled trials (RCTs) comparing efficacy of DP with other artemisinin-based combination therapies (ACTs), or non-ACTs, or placebo were selected. The primary endpoint was 28-day and 42-day treatment failure. We identified 26 RCTs. Many of the studies included in the present review were of high quality. Overall, DP, artesunate-mefloquine (MAS3) and artemether-lumefentrine (AL) were equally effective for reducing the risk of recurrent parasitaemia. The PCR confirmed efficacy of DP (99.5%) and MAS3 (97.7%) at day 28 exceeded 90%; both are efficacious. Comparable efficacy was also found for DP (95.6%) and AL (94.3%). The present review has documented that DP is comparable to other currently used ACTs such as MAS3 and AL in treating uncomplicated falciparum malaria. The better safety profile of DP and once-daily dosage improves adherence and its fixed co-formulation ensures that both drugs are taken together. Our conclusion is that DP has the potential to become a first-line antimalarial drug.
Discovery and development of antimalarial drugs have long been dominated by single-target therapy. Continuous effort has been made to explore and identify different targets in malaria parasite crucial for the malaria treatment. The single-target drug therapy was initially successful, but it was later supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has warranted a review of current antimalarial pharmacotherapy. This has led to the development of the new concept of covalent biotherapy, in which two or more pharmacophores are chemically bound to produce hybrid antimalarial drugs with multi-target functionalities. Herein, the review initially details the current pharmacotherapy for malaria as well as the conventional and novel targets of importance identified in the malaria parasite. Then, the rationale of multi-targeted therapy for malaria, approaches taken to develop the multi-target antimalarial hybrids, and the examples of hybrid molecules are comprehensively enumerated and discussed.
The extent of the economic burden of malaria and its imposed mechanisms are both relevant to public policy. This paper investigates the economic burden of malaria and household behaviour in relation to the treatment and prevention of the illness in Pakistan. In this regard, data were collected from a randomly selected sample of 360 households using structured questionnaires. The survey results indicate that 23.4% of household members contracted malaria during the three-month reference period. The average per person cost of malaria is estimated at 3116 Pakistani rupees (PKR) (USD 32). The estimated cost of the illness was found to be equivalent to, on average, 6.7% of monthly household income. Although high-income households face a higher financial burden due to better preventive and mitigation measures, the negative consequences hit low-income households harder due to liquidity constraints and poor access to effective treatment. We recommend that malaria control policies be integrated into development and poverty reduction programs.
Plasmodium knowlesi occurs across Southeast Asia and is the most common cause of malaria in Malaysia. High parasitaemias can develop rapidly, and the risk of severe disease in adults is at least as high as in falciparum malaria. Prompt initiation of effective treatment is therefore essential. Intravenous artesunate is highly effective in severe knowlesi malaria and in those with moderately high parasitaemia but otherwise uncomplicated disease. Both chloroquine and artemisinin-combination therapy (ACT) are highly effective for uncomplicated knowlesi malaria, with faster parasite clearance times and lower anaemia rates with ACT. Given the difficulties with microscope diagnosis of P. knowlesi, a unified treatment strategy of ACT for all Plasmodium species is recommended in coendemic regions.
Treatment Failure with chloroquine is one of the challenges that faced the dedicated efforts to eradicate malaria This study aims at investigating the impact of treatment failure with chloroquine on the progression of the disease-induced histo-pathogenic and immunogenic outcomes. To achieve this, Rane's protocol with modifications was applied on a model of Plasmodium berghei ANKA infected ICR mice to determine the dose response curve of chloroquine and to screen the treatment impact on the disease progression. Chloroquine was given at 1, 5, 10, 15 and 20 mg/kg once the parasitemia reached to 20-30% (the experimental initiation point). During the subsequent days, the mice were monitored for changes in the clinical signs, hematology parameters and the progress of the parasitemia until the parasitemia reached to 60-70% (the experimental termination point) or up to 10 days after chloroquine administration in case of achieving a complete eradication of the parasite. At the end, the mice were exsanguinated and their blood and organs were collected for the biochemistry and the histology study. A complete eradication of the parasite was achieved at 20 mg/kg while recrudescence was observed at the lower doses. At 1 mg/kg, the parasite growth was comparable to that of the positive control. The histo-pathogenic and immunogenic changes were stronger in the groups that experienced recrudescence (at 5 and 10 mg/kg). All in all, the study highlights the possibility of having a worsened clinical condition when chloroquine is given at its sub-therapeutic doses during malaria treatment.