Displaying publications 21 - 40 of 98 in total

Abstract:
Sort:
  1. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al.
    Parasit Vectors, 2020 Sep 15;13(1):472.
    PMID: 32933567 DOI: 10.1186/s13071-020-04345-2
    BACKGROUND: Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak.

    METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.

    RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.

    CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.

    Matched MeSH terms: Malaria/transmission
  2. Alam MT, Das MK, Ansari MA, Sharma YD
    Acta Trop, 2006 Jan;97(1):10-8.
    PMID: 16125659
    Anopheles (Cellia) sundaicus (Rodenwaldt) is an important malaria vector in the Andaman and Nicobar islands of India where it breeds in freshwater as well as in brackish water. To establish the molecular identity of An. sundaicus on these islands we analyzed samples from four geographically isolated areas-Teressa, Nancowry, Car Nicobar and Katchal islands. PCR-amplification and nucleotide sequence analysis were performed for internal transcribed spacer 2 (ITS2) and domain-3 (D3) of 28S rRNA. The ITS2 region of An. sundaicus from all four islands was identical but different from An. sundaicus A of Vietnam and An. sundaicus s.s of Malaysia. Furthermore, freshwater and brackish water forms of An. sundaicus did not reveal any sequence variation. Similarly, the D3 sequences were identical among all An. sundaicus samples from the four islands. D3 sequences for a species of the Sundaicus Complex are reported here for the first time and thus could not be compared with other regional isolates of this species. In conclusion, probably only one member of the Sundaicus Complex exists on the Andaman and Nicobar islands, which breeds in freshwater as well as in brackish water and is different from the An. sundaicus A and Malaysian An. sundaicus s.s. The identification of a new sibling species of the Sundaicus Complex in these islands is significant from the viewpoint of vector control strategies.
    Matched MeSH terms: Malaria/transmission*
  3. Frances SP, Edstein MD, Debboun M, Shanks GD
    US Army Med Dep J, 2016 Oct-Dec.
    PMID: 27613205
    Australian and US military medical services have collaborated since World War II to minimize vector-borne diseases such as malaria, dengue, and scrub typhus. In this review, collaboration over the last 30 years is discussed. The collaborative projects and exchange scientist programs have resulted in mutually beneficial outcomes in the fields of drug development and personal protection measures against vector-borne diseases.
    Matched MeSH terms: Malaria/transmission
  4. Sandosham AA
    Med J Malaysia, 1984 Mar;39(1):5-20.
    PMID: 6334800
    Matched MeSH terms: Malaria/transmission
  5. Reid JA
    Trans R Soc Trop Med Hyg, 1980;74(3):337-9.
    PMID: 7001688
    Anopheles donaldi Reid, a member of the A. barbirostris species group, is a vector of human filariasis and probably malaria. The discovery of some old specimens of this species, collected in Kuala Lumpur town where it no longer occurs, together with evidence from the literature about past malaria in the town, suggest that donaldi may have played a part in transmitting that malaria.
    Matched MeSH terms: Malaria/transmission*
  6. Rahman KM
    Rev. Infect. Dis., 1982 9 1;4(5):985-91.
    PMID: 6755616
    Malaria is a major public health problem in Malaysia, particularly in peninsular Malaysia and the state of Sabah. An eradication program started in the states of Sabah and Sarawak in 1961 initially was remarkably successful. A similar but staged program was started in peninsular Malaysia in 1967 and was also quite successful. However, a marked upsurge in incidence in Sabah in 1975-1978 showed that malaria is still a major hazard. The disease leads to great economic losses in terms of the productivity of the labor force and the learning capacity of schoolchildren. The topography, the climate, and the migrations of the people due to increased economic activity are similar in peninsular Malaysia, Sabah, and Sarawak. However, the epidemiologic picture differs strikingly from area to area in terms of species of vectors, distribution of parasitic species, and resistance of Plasmodium falciparum to chloroquine. Likewise, the problems faced by the eradication or control programs in the three regions are dissimilar. Because solutions to only some of these problems are possible, the eradication of malaria in Malaysia is not likely in the near future. However, the situation offers an excellent opportunity for further studies of antimalaria measures.
    Matched MeSH terms: Malaria/transmission
  7. Vythilingam I, Sidavong B, Chan ST, Phonemixay T, Vanisaveth V, Sisoulad P, et al.
    Trans R Soc Trop Med Hyg, 2005 Nov;99(11):833-9.
    PMID: 16112154
    Surveys were conducted in malaria-endemic villages in the southern province of Attapeu, Lao PDR during various seasons over a 3-year period. All-night mosquito landing collections, blood surveys and a case-control study were conducted. Plasmodium falciparum was the predominant species, and slide positivity rates were higher during the transition/dry season compared with the wet season. Anopheles dirus A was found to be the primary vector, and sporozoite rates were highest during the transition/dry season. Anopheles dirus was found to be endophagic and endophilic. Not using insecticide-treated bed nets, houses close to breeding sites and sleeping away from home were risk factors associated with malaria.
    Matched MeSH terms: Malaria/transmission*
  8. Peters W
    Philos Trans R Soc Lond B Biol Sci, 1976 Sep 28;275(941):439-82.
    PMID: 10589
    The primary objective of this project was to study the life cycle and ecology of Plasmodium pitheci, a malaria parasite of the orang-utan. The field work was based on the orang-utan rehabilitation centre in the Sepilok Forest Reserve of eastern Sabah. Two visits were made to Sepilok, the first in February and March, 1972, and the second (by W.P.) in January 1974. On the first visit two species of "surrogate host" were taken to Sabah, i.e. chimpanzees and Aotus monkeys for experimental work. The arboreal habitat of the orang-utan in the dipterocarp forests of eastern Sabah is described. In the Sepilok Forest Reserve dwell gibbons and leaf-monkeys, in addition to a small population of semi-domesticated and wild, free-ranging orang-utans of various ages. Although numerous species of anopheline mosquitoes have been collected in eastern Sabah, longitudinal studies are not available. Anopheles balabacensis was caught both attracted to orang-utans and to man at Sepilok. This species which is the main vector of human malaria in the north of Borneo, is suspected also of transmitting orang-utan malaria in this part of Sabah. Repeated blood examinations have been made on a number of orang-utans in the centre since 1966 and a high prevalence of infection was recorded with Plasmodium pitheci. In 1966 10 out of 19 animals had demonstrable parasitaemia. Detailed case histories are presented to show the course of parasitaemia in several orang-utans. Infections of P. pitheci were found to run a very chronic course. During the 1972 expedition a second, previously undescribed malaria parasite of the orang-utan was discovered, and was named P. silvaticum. The new parasite was successfully transmitted both by blood inoculation and, later, by sporozoite inoculation, into splenectomized chimpanzees. Although both species of malaria parasite may cause transitory signs of illness, orang-utans in general appear to be little discomforted by the infection. The animals do however suffer from other infectious diseases such as amoebic and balantidial dysentery, and melioidosis is a serious natural hazard which may have accounted for several deaths of wild orang-utans. An unidentified, intraerythrocytic structure that appeared in the blood of one chimpanzee, which had been inoculated with blood from an orang-utan, may have contributed to its death. Detailed descriptions and illustrations of P. pitheci and P. silvaticum are given. All stages of the life cycle of P. silvaticum are known (the tissue stages having been described in the liver of a "surrogate host", the chimpanzee) but only the blood and sporogonic stages of P. pitheci have been seen. This species was not infective to a chimpanzee, although there is an earlier report of a transient infection in this host by other workers. In the blood both parasites showed a tertian periodicity. From the appearance of the tissue schizonts on the seventh day it was estimated that the complete pre-erythrocytic cycle of P. silvaticum in the chimpanzee would occupy 8 days. P...
    Matched MeSH terms: Malaria/transmission
  9. Yong HS, Chiang GL, Loong KP, Ooi CS
    PMID: 3238481
    Starch-gel electrophoretic studies on nine gene-enzyme systems comprising 14 loci revealed a fair level of genetic variation in two population samples of Anopheles maculatus from Peninsular Malaysia. The proportion of polymorphic loci was 0.36 for the Fort Bertau sample and 0.29 for the Gua Musang sample, while the mean heterozygosity value was 0.09 for Fort Bertau and 0.07 for Gua Musang. The values of genetic similarity (I = 0.98) and genetic distance (D = 0.02) were of the rank of geographical populations.
    Matched MeSH terms: Malaria/transmission*
  10. Chang MS, Doraisingam P, Hardin S, Nagum N
    J Trop Med Hyg, 1995 Jun;98(3):192-8.
    PMID: 7783279
    Entomological investigations on malaria and bancroftian filariasis transmission were carried out in the endemic area of Baram District, Sarawak. The Anopheles composition, survival and infection rates of malaria and filariasis were compared in the village and 0.5 km from the village ecotype, in forested areas. Anopheles leucosphyrus, An. barbirostris and An. donaldi are the vectors for malaria and bancroftian filariasis in both ecotypes. Biting and infection rates vary, but An. leucosphyrus differed with a peak around midnight in the forested area and soon after dusk in the village setting. The parous rate of An. leucosphyrus was significantly higher in the forest ecotype (P < 0.0001); however, the proportion of 3-parous and older was not overall higher in the forest ecotype (P = 0.68). The entomological inoculation of malaria parasites by An. leucosphyrus was comparatively higher in the forested areas (P > 0.5). The implications of malaria and filariasis transmission in the forested areas in Baram District are discussed.
    Matched MeSH terms: Malaria/transmission*
  11. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

    Matched MeSH terms: Malaria/transmission*
  12. Wharton RH, Eyles DE, Warren M, Moorhouse DE
    Science, 1962 Sep 7;137(3532):758.
    PMID: 14006429 DOI: 10.1126/science.137.3532.758
    Anopheles leucosphyrus, an important vector of human malaria in Sarawak, Borneo, was shown to be infected with Plasmodium inui in Malaya by the inoculation of sporozoites into an uninfected rhesus monkey. The mosquito was caught while biting a man, thus demonstrating that it would be possible for a monkey infection to be transmitted to man in nature.
    Matched MeSH terms: Malaria/transmission*
  13. Mason Dentinger R
    J Hist Biol, 2016 04;49(2):359-95.
    PMID: 26307748 DOI: 10.1007/s10739-015-9421-8
    In 1960, American parasitologist Don Eyles was unexpectedly infected with a malariaparasite isolated from a macaque. He and his supervisor, G. Robert Coatney of the National Institutes of Health, had started this series of experiments with the assumption that humans were not susceptible to "monkey malaria." The revelation that a mosquito carrying a macaque parasite could infect a human raised a whole range of public health and biological questions. This paper follows Coatney's team of parasitologists and their subjects: from the human to the nonhuman; from the American laboratory to the forests of Malaysia; and between the domains of medical research and natural history. In the course of this research, Coatney and his colleagues inverted Koch's postulate, by which animal subjects are used to identify and understand human parasites. In contrast, Coatney's experimental protocol used human subjects to identify and understand monkey parasites. In so doing, the team repeatedly followed malaria parasites across the purported boundary separating monkeys and humans, a practical experience that created a sense of biological symmetry between these separate species. Ultimately, this led Coatney and his colleagues make evolutionary inferences, concluding "that monkeys and man are more closely related than some of us wish to admit." In following monkeys, men, and malaria across biological, geographical, and disciplinary boundaries, this paper offers a new historical narrative, demonstrating that the pursuit of public health agendas can fuel the expansion of evolutionary knowledge.
    Matched MeSH terms: Malaria/transmission
  14. Chang MS, Hii J, Buttner P, Mansoor F
    Trans R Soc Trop Med Hyg, 1997 7 1;91(4):382-6.
    PMID: 9373626
    Surveys were conducted of adult and immature mosquitoes in an area undergoing oil palm development in north Sarawak. Point prevalence data from 2 sites were collected annually, coinciding with annual phases of forest clearing, burning/cultivation, and maintenance. Major habitat perturbation during the forest/clearing transition shifted the major mosquito faunal equilibrium in terms of species composition, relative density and occurrence. Analyses of variance showed that the mean numbers of 4 species of Anopheles decreased significantly after forest clearing. Relative densities of immature stages decreased after forest clearing, but A. letifer and Culex tritaeniorhynchus remained relatively unchanged after the second year. Comparisons with the pre-development forest stage showed that the reductions in person-biting rates, adult survival and combined entomological inoculation rates (EIR) of A. donaldi and A. letifer decreased the risk of malaria transmission by 90% over the 4 years period. Concomitant reductions in EIR and annual malaria incidence were also correlated. This study highlighted the 'law of unintended consequences', since 2 contrasting effects were observed: reduction of malaria vectors but concomitant increase of dengue vectors.
    Matched MeSH terms: Malaria/transmission
  15. Dusfour I, Linton YM, Cohuet A, Harbach RE, Baimai V, Trung HD, et al.
    J Med Entomol, 2004 May;41(3):287-95.
    PMID: 15185927
    Anopheles sundaicus s.l. is a principal malaria vector taxon on islands and along the coastal areas of Southeast Asia. It has a wide geographical distribution and exhibits a high level of ecological and behavioral variability. Study of this taxon is crucial for understanding its biology and implementing effectise vector control measures. We compared populations of An. sundaicus from Vietnam, Thailand, and Malaysian Borneo by using two mitochondrial DNA markers: cytochrome oxidase I and cytochrome b. Genetic divergence, geographic separation, and cladistic analysis of relationships revealed the presence of two cryptic species: Anopheles sundaicus s.s. on Malaysian Borneo and An. sundaicus species A in coastal areas of Thailand and Vietnam. A polymerase chain reaction (PCR) assay was developed to easily identify these two species throughout their geographic distributions. The assay was based on sequence characterized amplified region derived from random amplified polymorphic DNA. This PCR identification method needs to be validated and adapted for the recognition of other possible species in the Sundaicus Complex.
    Matched MeSH terms: Malaria/transmission*
  16. Sabbatani S, Fiorino S, Manfredi R
    Infez Med, 2012 Mar;20(1):5-11.
    PMID: 22475654
    Epidemic foci of Plasmodium knowlesi malaria have been identified during the past ten years in Malaysia, in particular in the States of Sarawak and Sabah (Malaysia Borneo), and in the Pahang region (peninsular Malaysia). Based on a review of the available recent international literature, the authors underline the importance of molecular biology examinations, polymerase chain reactions (PCR), performed with primers specific for P. knowlesi, since the current microscopic examination (haemoscope) may fail to distinguish P. knowlesi from Plasmodium malariae, due to the very similar appearance of the two parasites. P. knowlesi has been described as the causal agent of life-threatening and lethal forms of malaria: its clinical picture is more severe when compared with that of P. malariae, since the disease is characterized by greater parasitaemia, as opposed to that documented in the course of P. malariae disease. The most effective carrier is Anopheles leucosphyrus: this mosquito is attracted by both humans and monkeys. Among primates, the natural hosts of P. knowlesi are Macaca fascicularis and Macaca nemestina, while Saimiri scirea and Macaca mulatta, which cannot become infected in nature, may be useful in experimental models. When underlining the potentially severe evolution, we note the key role played by prompt disease recognition, which is expected to be more straightforward in patients monitored in endemic countries at high risk, but should be carefully implemented for subjects being admitted to hospital in Western countries suffering from the typical signs and symptoms of malaria, after travelling in South-East Asia where they were engaged in excursions in the tropical forest (trekking, and similar outdoor activities). In these cases, the diagnosis should be prompt, and suitable treatment should follow. According to data in the literature, in non-severe cases chloroquine proves very effective against P. knowlesi, achieving the disappearance of signs and symptoms in 96% of cases after only 24 hours after treatment start. In the light of the emerging epidemiological data, P. knowlesi should be added to Plasmodium vivax, Plasmodium ovale, P. malariae, and Plasmodium falciparum, as the fifth aetiological agent of malaria. During the next few years, it will become mandatory to plan an appropriate surveillance program of the epidemiological evolution, paying also great attention to the clinical features of patients affected by P. knowlesi malaria, which are expected to worsen according to the time elapsed; some studies seem to point out greater severity according to increased parasitaemia, paralleling the increased interhuman infectious passages of the plasmodium.
    Matched MeSH terms: Malaria/transmission
  17. Sabbatani S, Fiorino S, Manfredi R
    Braz J Infect Dis, 2010 May-Jun;14(3):299-309.
    PMID: 20835518
    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological network. In parallel with epidemiological and health care policy studies, also an accurate appraisal of the clinical features of P. knowlesi-affected patients will be strongly needed, since some preliminary experiences seem to show an increased disease severity, associated with increased parasitemia, in parallel with the progressive increase of inter-human infectious passages of this emerging Plasmodium.
    Matched MeSH terms: Malaria/transmission
  18. Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong ML, et al.
    Parasit Vectors, 2014;7:436.
    PMID: 25223878 DOI: 10.1186/1756-3305-7-436
    While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria.
    Matched MeSH terms: Malaria/transmission*
  19. Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Mahmud R
    Malar J, 2010;9:137.
    PMID: 20497543 DOI: 10.1186/1475-2875-9-137
    Despite continuous efforts by the government and private sectors, malaria is still a public health problem in rural Peninsular Malaysia. This study investigated household knowledge, attitude and practices (KAP) regarding malaria in two malaria endemic communities, forest-aboriginal and rural communities, in the Lipis district of Pahang state, Malaysia.
    Matched MeSH terms: Malaria/transmission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links