Displaying publications 21 - 40 of 177 in total

Abstract:
Sort:
  1. Mansourizadeh A, Ismail AF
    J Hazard Mater, 2009 Nov 15;171(1-3):38-53.
    PMID: 19616376 DOI: 10.1016/j.jhazmat.2009.06.026
    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.
    Matched MeSH terms: Membranes, Artificial
  2. Ahmad AL, Chong MF, Bhatia S
    J Hazard Mater, 2009 Nov 15;171(1-3):166-74.
    PMID: 19573986 DOI: 10.1016/j.jhazmat.2009.05.114
    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.
    Matched MeSH terms: Membranes, Artificial
  3. Chew TL, Ahmad AL, Bhatia S
    Adv Colloid Interface Sci, 2010 Jan 15;153(1-2):43-57.
    PMID: 20060956 DOI: 10.1016/j.cis.2009.12.001
    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.
    Matched MeSH terms: Membranes, Artificial*
  4. Ali N, Halim NS, Jusoh A, Endut A
    Bioresour Technol, 2010 Mar;101(5):1459-65.
    PMID: 19786347 DOI: 10.1016/j.biortech.2009.08.070
    The focus of this research is to study the potential of nanofiltration membrane technology in removing ammonia-nitrogen from the aquaculture system. One of the major fabrication parameters that directly affect the separation performance is shear rate or casting rate during membrane fabrication. In this study, asymmetric polyethersulfone (PES) nanofiltration membranes were prepared at five different shear rates within the range of 67-400 s(-1). Membrane productivity and separation performance were assessed via pure water, salt and ammonia-nitrogen permeation experiments, and their structural properties were determined by employing the combination of the irreversible thermodynamic (IT) model, solution diffusion model, steric hindrance pore (SHP) model and Teorell-Meyers (TMS) model. The study reveals that the alteration of shear rate enormously affects the membrane morphology and structural parameters, hence subsequently significantly influencing the membrane performance. It was found that, membrane produced at the shear rate 200 s(-1) or equivalent to 10s of casting speed during membrane fabrications managed to remove about 68% of ammonia-nitrogen, in which its separation performance is the most favourable by means of highest flux and rejection ability towards unwanted solutes. Besides, from the research findings, nano-membrane technology is a potential candidate for the treatment of aquaculture wastewater.
    Matched MeSH terms: Membranes, Artificial*
  5. Tamilvanan S, Kumar BA, Senthilkumar SR, Baskar R, Sekharan TR
    AAPS PharmSciTech, 2010 Jun;11(2):904-9.
    PMID: 20496017 DOI: 10.1208/s12249-010-9455-3
    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.
    Matched MeSH terms: Membranes, Artificial*
  6. Fakhru'l-Razi A, Pendashteh A, Abidin ZZ, Abdullah LC, Biak DR, Madaeni SS
    Bioresour Technol, 2010 Sep;101(18):6942-9.
    PMID: 20434905 DOI: 10.1016/j.biortech.2010.04.005
    Oil and gas field wastewater or produced water is a significant waste stream in the oil and gas industries. In this study, the performance of a membrane sequencing batch reactor (MSBR) and membrane sequencing batch reactor/reverse osmosis (MSBR/RO) process treating produced wastewater were investigated and compared. The MSBR was operated in different hydraulic residence time (HRT) of 8, 20 and 44 h. Operation results showed that for a HRT of 20 h, the combined process effluent chemical oxygen demand (COD), total organic carbon (TOC) and oil and grease (O&G) removal efficiencies were 90.9%, 92% and 91.5%, respectively. The MSBR effluent concentration levels met the required standard for oil well re-injection. The RO treatment reduced the salt and organic contents to acceptable levels for irrigation and different industrial re-use. Foulant biopsy demonstrated that the fouling on the membrane surface was mainly due to inorganic (salts) and organic (microorganisms and their products, hydrocarbon constituents) matters.
    Matched MeSH terms: Membranes, Artificial*
  7. Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM
    AAPS PharmSciTech, 2010 Sep;11(3):1432-41.
    PMID: 20842539 DOI: 10.1208/s12249-010-9522-9
    Over the years, in vitro Franz diffusion experiments have evolved into one of the most important methods for researching transdermal drug administration. Unfortunately, this type of testing often yields permeation data that suffer from poor reproducibility. Moreover, this feature frequently occurs when synthetic membranes are used as barriers, in which case biological tissue-associated variability has been removed as an artefact of total variation. The objective of the current study was to evaluate the influence of a full-validation protocol on the performance of a tailor-made array of Franz diffusion cells (GlaxoSmithKline, Harlow, UK) available in our laboratory. To this end, ibuprofen was used as a model hydrophobic drug while synthetic membranes were used as barriers. The parameters investigated included Franz cell dimensions, stirring conditions, membrane type, membrane treatment, temperature regulation and sampling frequency. It was determined that validation dramatically reduced derived data variability as the coefficient of variation for steady-state ibuprofen permeation from a gel formulation was reduced from 25.7% to 5.3% (n = 6). Thus, validation and refinement of the protocol combined with improved operator training can greatly enhance reproducibility in Franz cell experimentation.
    Matched MeSH terms: Membranes, Artificial*
  8. See HH, Hauser PC, Sanagi MM, Ibrahim WA
    J Chromatogr A, 2010 Sep 10;1217(37):5832-8.
    PMID: 20696433 DOI: 10.1016/j.chroma.2010.07.054
    A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 microM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01-200 microg/L (GLYP) and 0.1-400 microg/L (AMPA), acceptable reproducibility (RSD 5-7%, n=5), low limits of detection of 0.005 microg/L for GLYP and 0.06 microg/L for AMPA, and satisfactory relative recoveries (90-94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success.
    Matched MeSH terms: Membranes, Artificial
  9. Hashim SM, Mohamed AR, Bhatia S
    Adv Colloid Interface Sci, 2010 Oct 15;160(1-2):88-100.
    PMID: 20813344 DOI: 10.1016/j.cis.2010.07.007
    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented.
    Matched MeSH terms: Membranes, Artificial*
  10. Abdulkarim MF, Abdullah GZ, Chitneni M, Salman IM, Ameer OZ, Yam MF, et al.
    Int J Nanomedicine, 2010 Nov 04;5:915-24.
    PMID: 21116332 DOI: 10.2147/IJN.S13305
    INTRODUCTION: During recent years, there has been growing interest in use of topical vehicle systems to assist in drug permeation through the skin. Drugs of interest are usually those that are problematic when given orally, such as piroxicam, a highly effective anti-inflammatory, anti-pyretic, and analgesic, but with the adverse effect of causing gastrointestinal ulcers. The present study investigated the in vitro and in vivo pharmacodynamic activity of a newly synthesized palm oil esters (POEs)-based nanocream containing piroxicam for topical delivery.

    METHODS: A ratio of 25:37:38 of POEs: external phase: surfactants (Tween 80:Span 20, in a ratio 80:20), respectively was selected as the basic composition for the production of a nanocream with ideal properties. Various nanocreams were prepared using phosphate-buffered saline as the external phase at three different pH values. The abilities of these formulae to deliver piroxicam were assessed in vitro using a Franz diffusion cell fitted with a cellulose acetate membrane and full thickness rat skin. These formulae were also evaluated in vivo by comparing their anti-inflammatory and analgesic activities with those of the currently marketed gel.

    RESULTS: After eight hours, nearly 100% of drug was transferred through the artificial membrane from the prepared formula F3 (phosphate-buffered saline at pH 7.4 as the external phase) and the marketed gel. The steady-state flux through rat skin of all formulae tested was higher than that of the marketed gel. Pharmacodynamically, nanocream formula F3 exhibited the highest anti- inflammatory and analgesic effects as compared with the other formulae.

    CONCLUSION: The nanocream containing the newly synthesized POEs was successful for trans-dermal delivery of piroxicam.

    Matched MeSH terms: Membranes, Artificial
  11. Sakeena MH, Muthanna FA, Ghassan ZA, Kanakal MM, Elrashid SM, Munavvar AS, et al.
    J Oleo Sci, 2010;59(4):223-8.
    PMID: 20299769
    The aim of the present study is to formulate and investigate the potential of nanoemulsion formulation for topical delivery of ketoprofen. In this study, Palm Oil Esters (POEs) a newly introduced oil by Universiti Putra Malaysia researchers was chosen for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Oil-in-water nanoemulsion was prepared by spontaneous emulsification method. The droplets size was studied by laser scattering spectroscopy (Nanophox) and Transmission Electron Microscopy (TEM). Franz diffusion cells were used, to determine the drug release and drug transferred through methyl acetate cellulose membrane (artificial membrane). The results of droplets size analysis shows the droplets are in the range of nanoemulsion which is below than 500 nm. The in vitro release profile shows a sufficient percentage of drugs released through the methyl acetate cellulose membrane. This initial study showed that the nanoemulsion formulated using POEs has great potential for topical delivery of ketoprofen.
    Matched MeSH terms: Membranes, Artificial
  12. Baroutian S, Aroua MK, Raman AA, Sulaiman NM
    Bioresour Technol, 2011 Jan;102(2):1095-102.
    PMID: 20888219 DOI: 10.1016/j.biortech.2010.08.076
    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.
    Matched MeSH terms: Membranes, Artificial*
  13. Siar CH, Toh CG, Romanos G, Ng KH
    Clin Oral Implants Res, 2011 Jan;22(1):113-20.
    PMID: 20678135 DOI: 10.1111/j.1600-0501.2010.01970.x
    collagenous and noncollagenous membranes have been investigated in many animal systems but their effects in the macaque model are unknown.
    Matched MeSH terms: Membranes, Artificial*
  14. Damayanti A, Ujang Z, Salim MR
    Bioresour Technol, 2011 Mar;102(6):4341-6.
    PMID: 21251818 DOI: 10.1016/j.biortech.2010.12.061
    The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.
    Matched MeSH terms: Membranes, Artificial
  15. Low PL, Yong BE, Ong BH, Matsumoto M, Tou TY
    J Nanosci Nanotechnol, 2011 Mar;11(3):2640-3.
    PMID: 21449444
    The substrate effects on surface morphologies, crystal structures, and magnetic properties of the sputter-deposited FePt thin films on Corning 1737, normal glass, and Si wafer substrates, respectively, were investigated. High in-plane coercivities of 10 kOe were obtained for the air-annealed films on Corning 1737 and Si wafer, where both films similarly have granular-like morphologies. Besides, increasing grain size and surface roughness of all the FePt films with the post-anneal temperature were observed. Moreover, partially separated grains were seen in the film on Si wafer, where the formation of Fe silicides during post-anneal is suspected, in which has enhanced the magnetic ordering.
    Matched MeSH terms: Membranes, Artificial*
  16. Berahim Z, Moharamzadeh K, Rawlinson A, Jowett AK
    J. Periodontol., 2011 May;82(5):790-7.
    PMID: 21080786 DOI: 10.1902/jop.2010.100533
    Cell-based therapy using autologous cells has been suggested as a potential approach for periodontal tissue regeneration. Spheroid systems are a form of three-dimensional cell culture that promotes cell matrix interaction, which could recapitulate the aspect of cell homeostasis in vivo. The aim of this study is to assess the interaction of periodontal fibroblast spheroids with synthetic and collagen-based membranes that have been used in guided tissue regeneration.
    Matched MeSH terms: Membranes, Artificial*
  17. Chang SH, Teng TT, Ismail N, Alkarkhi AF
    J Hazard Mater, 2011 Jun 15;190(1-3):197-204.
    PMID: 21493005 DOI: 10.1016/j.jhazmat.2011.03.025
    The objectives of this work were to select suitable design parameters and optimize the operating parameters of a soybean oil-based bulk liquid membrane (BLM) for Cu(II) removal and recovery from aqueous solutions. The soybean oil-based BLM consists of an aqueous feed phase (Cu(II) source), an organic membrane phase (soybean oil (diluent), di-2-ethylhexylphosphoric acid (D2EHPA) (carrier) and tributylphosphate (phase modifier)) and an aqueous stripping phase (sulfuric acid solution (H(2)SO(4))). Effects of design parameters (stirring condition and stripping/membrane to feed/membrane interface area ratio) of soybean oil-based BLM on the Cu(II) removal and recovery from aqueous solutions were investigated and the suitable parameters were selected for further studies. Optimization of the operating parameters (D2EHPA concentration, H(2)SO(4) concentration, stirring speed, temperature and operating time) of soybean oil-based BLM for maximum percentage (%) recovery of Cu(II) was then conducted using Response Surface Methodology and the optimum parameters were determined. A regression model for % recovery was developed and its adequacy was evaluated. The experimental % recovery obtained under the optimum operating conditions was compared with the predicted one and they were found to agree satisfactorily with each other.
    Matched MeSH terms: Membranes, Artificial*
  18. Pendashteh AR, Fakhru'l-Razi A, Chaibakhsh N, Abdullah LC, Madaeni SS, Abidin ZZ
    J Hazard Mater, 2011 Aug 30;192(2):568-75.
    PMID: 21676540 DOI: 10.1016/j.jhazmat.2011.05.052
    A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372kg COD/(m(3)day)) and cyclic time (12, 24, and 48h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O&G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44kg COD/(m(3)day), TDS of 78,000mg/L and reaction time (RT) of 40h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100mg/L and met the discharge limits.
    Matched MeSH terms: Membranes, Artificial*
  19. Nosrati S, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Sep 15;192(3):1283-90.
    PMID: 21752542 DOI: 10.1016/j.jhazmat.2011.06.037
    This work evaluates the performance of ionic liquid in supported liquid membrane (SLM) for the removal of phenol from wastewater. Ionic liquids are organic salts entirely composed of organic cations and either organic or inorganic anions. Due to the fact that the vapor pressure of ionic liquid is not detectable and they are sparingly soluble in most conventional solvents, they can be applied in SLM as the organic phase. In this work, 1-n-alkyl-3-methylimidazolium salts, [C(n)MIM](+)[X](-) have been investigated so as to determine an optimal supported ionic liquid membrane. The effect of operational parameters such as pH, stirring speed and the concentration of stripping agent has been studied, and an evaluation of different membrane supports were also carried out. With a minimal amount of the ionic liquid 1-Butyl-3-methylimidazolium hydrogensulfate, 85% phenol removal could be achieved by using polytetrafluoroethylene hydrophobic membrane filter in the SLM.
    Matched MeSH terms: Membranes, Artificial
  20. Yuzir A, Chelliapan S, Sallis PJ
    Bioresour Technol, 2011 Oct;102(20):9456-61.
    PMID: 21862323 DOI: 10.1016/j.biortech.2011.07.083
    The effects of different hydraulic retention time (HRT) on (RS)-MCPP utilisation was investigated by decreasing the feed flow rate in an anaerobic membrane bioreactor (AnMBR). Results showed an average COD removal efficiency of 91.4%, 96.9% and 94.4% when the reactor was operated at HRT 3, 7 and 17 d, respectively. However, when the HRT was reduced to 1d, the COD removal efficiency declined to just only 60%, confirming the AnMBR is stable to a large transient hydraulic shock loads. The (RS)-MCPP removal efficiency fluctuated from 6% to 39% at HRT 3 d, however when it was increased to 7 and 17 d, the removal efficiency increased to an average of 60% and 74.5%. In addition, (RS)-MCPP specific utilisation rates (SUR) were dependent on the HRT and gradually improved from 18 to 43 μg mg VSS(-1) d(-1) as flow rate increased.
    Matched MeSH terms: Membranes, Artificial*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links