Displaying publications 21 - 40 of 339 in total

Abstract:
Sort:
  1. Zahedi SN, Hejazi SH, Boshtam M, Amini F, Fazeli H, Sarmadi M, et al.
    Acta Parasitol, 2021 Mar;66(1):53-59.
    PMID: 32676917 DOI: 10.1007/s11686-020-00251-w
    PURPOSE: Leishmaniasis, a widespread parasitic disease, is a public health concern that is endemic in more than 90 countries. Owing to the drug resistance and also undesirable complications, designing new therapeutic methods are essential. C-reactive protein (CRP) is an acute phase protein of plasma with several immune modulatory functions. This study aimed to evaluate the effect of human recombinant CRP (hrCRP) on treating cutaneous leishmaniasis in mice models.

    METHODS: hrCRP was expressed in E. coli Rosetta-gami and extracted from the SDS-PAGE gel. Male BALB/c mice were inoculated subcutaneously at the base of their tails by 1 × 105 stationary-phase of Leishmania major promastigotes (MHRO/IR/75/ER) suspended in sterile phosphate buffered saline (PBS). Nodules and subsequently, ulcers developed 14 days post-injection. 1.5 µg of the purified protein was administered on lesions of pre-infected mice by Leishmania major in the intervention group for five consecutive days.

    RESULTS: The mean area of the lesions was decreased by about seven folds in the intervention group as compared to the control group after two weeks of the treatment (p = 0.024). The results were verified by the real-time polymerase chain reaction so that the parasite burden was determined 27 times in the control group as compared to the intervention group (p = 0.02). Two weeks after treatment, the conversion of the lesions to scars in the intervention group was observed.

    CONCLUSION: The results indicate a potential therapeutic role for hrCRP in improving cutaneous leishmaniasis due to Leishmania major in mice models. The healing was in a stage-dependent manner.

    Matched MeSH terms: Mice, Inbred BALB C
  2. Yusof HM, Ali NM, Yeap SK, Ho WY, Beh BK, Koh SP, et al.
    BMC Complement Altern Med, 2019 Dec 19;19(1):373.
    PMID: 31856816 DOI: 10.1186/s12906-019-2791-2
    BACKGROUND: Tempeh is a widely known fermented soybean that contains elevated level of bioactive contents. Our previous study has shown that anaerobic fermented Nutrient Enriched Soybean Tempeh (NESTE) with increase amino acid and antioxidant levels possessed better hepatoprotective effect than raw soybean.

    METHODS: In this study, the anti-inflammatory effect of the NESTE aqueous extract and raw soybean aqueous extract (SBE) were evaluated by quantifying the inhibition of IL-1β, TNF-α and nitric oxide (NO) secretion in LPS treated RAW 264.7 cell in vitro. On the other hand, in vivo oral acute toxicity effect of the extract was tested on mice at the dose of 5000 mg/kg body weight. In vivo oral analgesic effect of both aqueous extracts at 200 and 1000 mg/kg body weight was evaluated by the hot plate test.

    RESULTS: In the in vitro anti-inflammatory study, 5 mg/mL NESTE was able to inhibit 25.50 ± 2.20%, 35.88 ± 3.20% and 28.50 ± 3.50% of NO, IL-1β and TNF-α production in LPS treated RAW 264.7 cells without inducing cytotoxic effect on the cells. However, this effect was lower than 4 μg/mL of curcumin, which inhibited NO, IL-1β and TNF-α production by 89.50 ± 5.00%, 78.80 ± 6.20% and 87.30 ± 4.00%, respectively. In addition, 1.5 to 2.5-fold increase of latency period up to 120 min for mice in the hot plate test was achieved by 1000 mg/kg NESTE. The analgesic effect of NESTE was better than 400 mg/kg of acetyl salicylic acid, which only increased ~ 1.7-fold of latency period up to 90 min. Moreover, NESTE did not show acute toxicity (no LD50) up to 5000 mg/kg body weight.

    CONCLUSION: NESTE is a nutritious food ingredient with potential anti-inflammatory and analgesic effects.

    Matched MeSH terms: Mice, Inbred BALB C
  3. Yong VC, Ong KW, Sidik SM, Rosli R, Chong PP
    J Microbiol Methods, 2009 Nov;79(2):242-5.
    PMID: 19737582 DOI: 10.1016/j.mimet.2009.08.019
    In situ Reverse Transcriptase PCR (in situ RT-PCR) can amplify mRNA and localize gene expression in cells. However, this method is not feasible in fungi as the thick fungal cell wall constitutes a barrier to this procedure. We developed a two step in situ RT-PCR procedure which enabled the detection and localization of Candida tropicalis mRNA expression in formalin-fixed, paraffin-embedded (FFPE) mouse kidney sections. This in situ hybridization study revealed the first direct evidence for deposition of Candida tropicalis secreted aspartic proteinase 2 (CtSAP2) in the tip of pseudohyphae and its involvement in acute systemic candidiasis. We conclude that in situ RT-PCR can be successfully applied to FFPE tissues and will offer new perspectives in studying gene expression in Candida species.
    Matched MeSH terms: Mice, Inbred BALB C
  4. Yong CY, Yeap SK, Goh ZH, Ho KL, Omar AR, Tan WS
    Appl Environ Microbiol, 2015 Feb;81(3):882-9.
    PMID: 25416760 DOI: 10.1128/AEM.03695-14
    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
    Matched MeSH terms: Mice, Inbred BALB C
  5. Yeap SK, Beh BK, Ali NM, Mohd Yusof H, Ho WY, Koh SP, et al.
    Biomed Res Int, 2014;2014:694842.
    PMID: 24877129 DOI: 10.1155/2014/694842
    Mung bean has been traditionally used to alleviate heat stress. This effect may be contributed by the presence of flavonoids and γ-aminobutyric acid (GABA). On the other hand, fermentation and germination have been practised to enhance the nutritional and antioxidant properties of certain food products. The main focus of current study was to compare the antistress effect of none-process, fermented and germinated mung bean extracts. Acute and chronic restraint stresses were observed to promote the elevation of serum biochemical markers including cholesterol, triglyceride, total protein, liver enzymes, and glucose. Chronic cold restraint stress was observed to increase the adrenal gland weight, brain 5-hydroxytryptamine (5-HT), and malondialdehyde (MDA) level while reducing brain antioxidant enzyme level. However, these parameters were found reverted in mice treated with diazepam, high concentration of fermented mung bean and high concentration of germinated mung bean. Moreover, enhanced level of antioxidant on the chronic stress mice was observed in fermented and germinated mung bean treated groups. In comparison between germinated and fermented mung bean, fermented mung bean always showed better antistress and antioxidant effects throughout this study.
    Matched MeSH terms: Mice, Inbred BALB C
  6. Yeap SK, Yong CY, Faruq U, Ong HK, Amin ZBM, Ho WY, et al.
    BMC Complement Med Ther, 2021 Mar 09;21(1):86.
    PMID: 33750373 DOI: 10.1186/s12906-021-03260-y
    BACKGROUND: Phyllanthus tenellus Roxb. has been traditionally used to treat inflammation and liver diseases and its medicinal property may be due to the presence of relatively high levels of hydrosable tannins. Recent report revealed that pressurized hot water extraction of P. tenellus significantly increased the concentration of hydrolysable tannins and its catabolites. Thus, this study was aimed to evaluate the in vivo toxicity and antioxidant capacity of pressurized hot water extraction of P. tenellus on healthy mice.

    METHODS: Pressurized hot water extraction P. tenellus was carried out and standardized to 7.9% hydrosable tannins. In vitro toxicity of the extract was tested on NIH 3 T3 cell by MTT assay. The cellular antioxidant level was quantified by measuring cellular level of glutathione. Oral sub-chronic toxicity (200, 1000 and 3000 mg/kg body weight) of P. tenellus extract were evaluated on healthy mice. Liver and kidney antioxidant level was quantified by measuring levels of Ferric Reducing Antioxidant Potential (FRAP), superoxide dismutase, glutathione.

    RESULTS: The P. tenellus extract did not induce cytotoxicity on murine NIH 3 T3 cells up to 200 μg/mL for 48 h. Besides, level of glutathione was higher in the extract treated NIH 3 T3 cells. P. tenellus extract did not cause mortality at all tested concentration. When treated with 1000 mg/kg of the extract, serum liver enzymes (ALP and ALT) and LDH were lower than normal control and mice treated with 200 mg/kg of extract. Moreover, SOD, FRAP and glutathione levels of liver of the mice treated with 200 and 1000 mg/kg of extract were higher than the normal control mice. On the other hand, when treated with 3000 mg/kg of extract, serum liver enzymes (ALP and ALT) and LDH were higher than normal mice without changing the liver SOD and glutathione level, which may contribute to the histological sign of ballooning hepatocyte.

    CONCLUSION: P. tenellus extract standardized with 7.9% hydrosable tannins and their catabolites increased the antioxidant levels while reducing the nitric oxide levels in both liver and kidney without causing any acute and sub-chronic toxicity in the mice.

    Matched MeSH terms: Mice, Inbred BALB C
  7. Yeap SK, Mohd Ali N, Mohd Yusof H, Alitheen NB, Beh BK, Ho WY, et al.
    J Biomed Biotechnol, 2012;2012:285430.
    PMID: 23091343 DOI: 10.1155/2012/285430
    Mung bean was reported as a potential antidiabetic agent while fermented food has been proposed as one of the major contributors that can reduce the risk of diabetes in Asian populations. In this study, we have compared the normoglycemic effect, glucose-induced hyperglycemic effect, and alloxan-induced hyperglycemic effect of fermented and nonfermented mung bean extracts. Our results showed that fermented mung bean extracts did not induce hypoglycemic effect on normal mice but significantly reduced the blood sugar levels of glucose- and alloxan-induced hyperglycemic mice. The serum levels of cholesterol, triglyceride (TG), and low-density lipoprotein (LDL) were also lowered while insulin secretion and antioxidant level as measured by malonaldehyde (MDA) assays were significantly improved in the plasma of the fermented mung bean-treated group in alloxan-induced hyperglycemic mouse. These results indicated that fermentation using Mardi Rhizopus sp. strain 5351 inoculums could enhance the antihyperglycemic and the antioxidant effects of mung bean in alloxan-treated mice. The improvement in the antihyperglycemic effect may also be contributed by the increased content of GABA and the free amino acid that are present in the fermented mung bean extracts.
    Matched MeSH terms: Mice, Inbred BALB C
  8. Yeap SK, Omar AR, Ali AM, Ho WY, Beh BK, Alitheen NB
    PMID: 21941589 DOI: 10.1155/2012/786487
    The in vivo immunomodulatory effect of ethanolic extracts from leaves of Rhaphidophora korthalsii was determined via immune cell proliferation, T/NK cell phenotyping, and splenocyte cytotoxicity of BALB/c mice after 5 consecutive days of i.p. administration at various concentrations. Splenocyte proliferation index, cytotoxicity, peripheral blood T/NK cell population, and plasma cytokine (IL-2 and IFN-γ) in mice were assessed on day 5 and day 15. High concentration of extract (350 μg/mice/day for 5 consecutive days) was able to stimulate immune cell proliferation, peripheral blood NK cell population, IL-2, and IFN- γ cytokines, as well as splenocyte cytotoxicity against Yac-1 cell line. Unlike rIL-2 which degraded rapidly, the stimulatory effect from the extract managed to last until day 15. These results suggested the potential of this extract as an alternative immunostimulator, and they encourage further study on guided fractionation and purification to identify the active ingredients that contribute to this in vitro and in vivo immunomodulatory activity.
    Matched MeSH terms: Mice, Inbred BALB C
  9. Yang Y, Swierczak A, Ibahim M, Paiva P, Cann L, Stevenson AW, et al.
    Radiother Oncol, 2019 04;133:93-99.
    PMID: 30935588 DOI: 10.1016/j.radonc.2019.01.006
    BACKGROUND: Synchrotron microbeam radiation therapy (MRT) is a new, evolving form of radiotherapy that has potential for clinical application. Several studies have shown in preclinical models that synchrotron MRT achieves equivalent tumor control to conventional radiotherapy (CRT) but with significantly reduced normal tissue damage.

    METHODS: To explore differences between these two modalities, we assessed the immune cell infiltrate into EMT6.5 mammary tumors after CRT and MRT.

    RESULTS: CRT induced marked increases in tumor-associated macrophages and neutrophils while there were no increases in these populations following MRT. In contrast, there were higher numbers of T cells in the MRT treated tumors. There were also increased levels of CCL2 by immunohistochemistry in tumors subjected to CRT, but not to MRT. Conversely, we found that MRT induced higher levels of pro-inflammatory genes in tumors than CRT.

    CONCLUSION: Our data are the first to demonstrate substantial differences in macrophage, neutrophil and T cell numbers in tumors following MRT versus CRT, providing support for the concept that MRT evokes a different immunomodulatory response in tumors compared to CRT.

    Matched MeSH terms: Mice, Inbred BALB C
  10. Yang F, Guo KX, Yang DQ, Liu RD, Long SR, Zhang X, et al.
    Trop Biomed, 2020 Jun 01;37(2):458-470.
    PMID: 33612815
    A T. spiralis serine protease 1.2 (TsSP1.2) was identified in the muscle larvae (ML) and intestinal larvae surface/excretory-secretory (ES) proteins by immunoproteomics. The aim of this study was to determine the TsSP1.2 function in the process of T. spiralis intrusion, growth and reproduction by using RNA interference (RNAi). RNAi was used to silence the expression of TsSP1.2 mRNA and protein in the nematode. On 2 days after the ML were electroporated with 2 µM of TsSP1.2-specific siRNA 534, TsSP1.2 mRNA and protein expression declined in 56.44 and 84.48%, respectively, compared with untreated ML. Although TsSP1.2 silencing did not impair worm viability, larval intrusion of intestinal epithelium cells (IEC) was suppressed by 57.18% (P < 0.01) and the suppression was siRNA-dose dependent (r = 0.976). Infection of mice with siRNA 534 transfected ML produced a 57.16% reduction of enteral adult burden and 71.46% reduction of muscle larva burden (P < 0.05). Moreover, silencing of TsSP1.2 gene in ML resulted in worm development impediment and reduction of female fertility. The results showed that silencing of TsSP1.2 by RNAi inhibited larval intrusion and development, and reduced female fecundity. TsSP1.2 plays a crucial role for worm invasion and development in T. spiralis life cycle, and is a potential vaccine/drug target against Trichinella infection.
    Matched MeSH terms: Mice, Inbred BALB C
  11. Yang DQ, Zeng Y, Sun XY, Yue X, Hu CX, Jiang P, et al.
    Trop Biomed, 2020 Dec 01;37(4):932-946.
    PMID: 33612747 DOI: 10.47665/tb.37.4.932
    In previous studies, a Trichinella spiralis serine protease (TsSP) was identified in excretion/secretion (ES) products from intestinal infective L1 larvae (IIL1) using immunoproteomics. The complete cDNA sequence of TsSP gene was 1372 bp, which encoded 429 amino acids with 47.55 kDa. The TsSP was transcribed and expressed at all T. spiralis life cycle phases, as well as mainly located at the cuticle and stichosome of the parasitic nematode. Recombinant TsSP bind to intestinal epithelial cells (IEC) and promoted larva invasion, however, its exact function in invasion, development and reproduction are still unknown. The aim of this study was to confirm the biological function of TsSP during T. spiralis invasion and growth using RNA interference (RNAi) technology. The results showed that on 1 day after electroporation using 2.5 µM siRNA156, TsSP mRNA and protein expression of muscle larvae (ML) was suppressed by 48.35 and 59.98%, respectively. Meanwhile, silencing of TsSP gene by RNAi resulted in a 61.38% decrease of serine protease activity of ML ES proteins, and a significant reduction of the in vitro and in vivo invasive capacity of IIL1 to intrude into the IEC monolayer and intestinal mucosa. When mice were infected with siRNA 156-transfected larvae, adult worm and muscle larva burdens were decreased by 58.85 and 60.48%, respectively. Moreover, intestinal worm growth and female fecundity were evidently inhibited after TsSP gene was knockdown, it was demonstrated that intestinal adults became smaller and the in vitro newborn larval yield of females obviously declined compared with the control siRNA group. The results indicated that knockdown of TsSP gene by RNAi significantly reduced the TsSP expression and enzymatic activity, impaired larvae intrusion and growth, and lowered the female reproductive capacity, further verified that TsSP might participate in diverse processes of T. spiralis life cycle, it will be a new prospective candidate molecular target of anti-Trichinella vaccines.
    Matched MeSH terms: Mice, Inbred BALB C
  12. Xian TH, Sinniah K, Yean CY, Krishnamoorthy V, Bahari MB, Ravichandran M, et al.
    BMC Immunol, 2020 05 25;21(1):29.
    PMID: 32450807 DOI: 10.1186/s12865-020-00360-1
    BACKGROUND: Cholera, an acute watery diarrhoeal disease caused by Vibrio cholerae serogroup O1 and O139 across the continents. Replacing the existing WHO licensed killed multiple-dose oral cholera vaccines that demand 'cold chain supply' at 2-8 °C with a live, single-dose and cold chain-free vaccine would relieve the significant bottlenecks and cost determinants in cholera vaccination campaigns. In this direction, a prototype cold chain-free live attenuated cholera vaccine formulation (LACV) was developed against the toxigenic wild-type (WT) V. cholerae O139 serogroup. LACV was found stable and retained its viability (5 × 106 CFU/mL), purity and potency at room temperature (25 °C ± 2 °C, and 60% ± 5% relative humidity) for 140 days in contrast to all the existing WHO licensed cold-chain supply (2-8 °C) dependent killed oral cholera vaccines.

    RESULTS: The LACV was evaluated for its colonization potential, reactogenicity, immunogenicity and protective efficacy in animal models after its storage at room temperature for 140 days. In suckling mice colonization assay, the LACV recorded the highest recovery of (7.2 × 107 CFU/mL) compared to those of unformulated VCUSM14P (5.6 × 107 CFU/mL) and the WT O139 strain (3.5 × 107 CFU/mL). The LACV showed no reactogenicity even at an inoculation dose of 104-106 CFU/mL in a rabbit ileal loop model. The rabbits vaccinated with the LACV or unformulated VCUSM14P survived a challenge with WT O139 and showed no signs of diarrhoea or death in the reversible intestinal tie adult rabbit diarrhoea (RITARD) model. Vaccinated rabbits recorded a 275-fold increase in anti-CT IgG and a 15-fold increase in anti-CT IgA antibodies compared to those of rabbits vaccinated with unformulated VCUSM14P. Vibriocidal antibodies were increased by 31-fold with the LACV and 14-fold with unformulated VCUSM14P.

    CONCLUSION: The vaccine formulation mimics a natural infection, is non-reactogenic and highly immunogenic in vivo and protects animals from lethal wild-type V. cholerae O139 challenge. The single dose LACV formulation was found to be stable at room temperature (25 ± 2 °C) for 140 days and it would result in significant cost savings during mass cholera vaccination campaigns.

    Matched MeSH terms: Mice, Inbred BALB C
  13. Wong SF, Mak JW
    Hybridoma (Larchmt), 2010 Dec;29(6):539-46.
    PMID: 21117988 DOI: 10.1089/hyb.2010.0049
    Candida parapsilosis has emerged as one of the most common causes of bloodstream infection worldwide. The diagnosis of invasive candidiasis etiological agents to the species level remains a laboratory and clinical challenge. Thus, specific monoclonal antibodies to detect systemic candidiasis and to identify Candida virulence factors and associated pathogenesis through immunohistochemistry would be very useful. Inbred Balb/c mice were immunized with C. parapsilosis antigens, and blood was checked for the presence of reactive antibodies using ELISA. Fusion was performed using the harvested spleen cells and NS1 myeloma cells, and the clones were screened for the presence of antibody producing hybrid cells by dot-blot. The 1B11 clone secreted IgG2a monoclonal antibody that was reactive with the C. parapsilosis antigen at MW of 59 kDa and cross-reacted with C. tropicalis but not with other fungal and bacterial antigens tested. Another 3D1 clone secreted IgG1 monoclonal antibody that was reactive with C. parapsilosis antigen at MW of 30 kDa. The 3D1 monoclonal antibody was found to be species specific. Experimental systemic candidiasis in rats was induced through intravenous injection of C. parapsilosis, and all the vital organs were collected for immunohistochemistry study. These monoclonal antibodies were reactive against surface epitopes on the yeast cells, pseudohyphae, and immune complexes in tissue sections. Sandwich ELISAs using these antibodies were developed and were able to detect circulating antigens in experimental candidiasis in rats at 0.2 μg/μL. These monoclonal antibodies may have potential as primary capture antibodies for the development of rapid diagnostic test for human systemic fungal infection.
    Matched MeSH terms: Mice, Inbred BALB C
  14. Wong SF, Mak JW, Pook CK
    Hybridoma (Larchmt), 2008 Oct;27(5):361-73.
    PMID: 18823263 DOI: 10.1089/hyb.2008.0021
    The Candida species are the most common fungal pathogens of systemic candidiasis. The diagnosis of invasive candidiasis remains a laboratory and clinical challenge. Thus, development of diagnostic assays to detect systemic candidiasis and to identify Candida virulence factors and associated pathogenesis through immunohistochemistry using specific monoclonals and polyclonals will be useful. Inbred Balb/c mice were immunized with C. albicans antigens, and blood was checked for the presence of reactive antibodies using ELISA. Fusion was performed using the harvested spleen cells and NS1 myeloma cells, and the clones were screened for the presence of antibody producing hybrid cells by dot-blot. Western blot analysis showed that the L2D10 monoclonal antibody was reactive against the antigens with molecular weight of 20 kDa. Experimental systemic candidiasis in mice was induced through intravenous injection of C. albicans and all the vital organs were collected for immunohistochemistry study. The monoclonal antibody reacted to surface epitopes on the yeast cells, germ tubes, and hyphae, and to immune complexes. It was used with the polyclonal antibody in a sandwich ELISA for the detection of circulating antigens in experimental candiadiasis in mice. Antibody levels were also determined using the ELISA method, and the antibody levels of C. albicans infected mice were increased compared with uninfected animals. The monoclonal antibody was used in immunoperoxidase and immunofluorescence techniques for the detection of fungal infection in tissue sections and was found to be more sensitive than conventional periodic acid Schiff or silver staining techniques. This monoclonal antibody may serve as potential primary capture antibodies for the development of a rapid diagnostic test for human systemic fungal infection.
    Matched MeSH terms: Mice, Inbred BALB C
  15. Wong MTJ, Anuar NS, Noordin R, Tye GJ
    Acta Trop, 2024 Mar;251:107122.
    PMID: 38246399 DOI: 10.1016/j.actatropica.2024.107122
    Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.
    Matched MeSH terms: Mice, Inbred BALB C
  16. Wong CC, Lim SH, Sagineedu SR, Lajis NH, Stanslas J
    Pharmacol Res, 2016 05;107:66-78.
    PMID: 26940565 DOI: 10.1016/j.phrs.2016.02.024
    SRJ09 (3,19-(2-bromobenzylidene)andrographolide), a semisynthetic andrographolide (AGP) derivative, was shown to induce G1 cell cycle arrest and eventually apoptosis in breast and colon cancer cell lines. The present investigation was carried out to elucidate the mechanisms cell cycle arrest and apoptosis and evaluate the in vivo antitumor activity of SRJ09. The in vitro growth inhibitory properties of compounds were assessed in colon (HCT-116) and breast (MCF-7) cancer cell lines. Immunoblotting was utilized to quantitate the protein levels in cells. The gene expressions were determined using reverse transcriptase PCR (RT-PCR). Pharmacokinetic investigation was carried out by determining SRJ09 levels in plasma of Balb/C mice using HPLC. In vivo antitumor activity was evaluated in athymic mice carrying HCT-116 colon tumor xenografts. SRJ09 displayed improved in vitro activity when compared with AGP by producing rapid cell killing effect in vitro. Its activity was not compromised in MES-SA/Dx5 multidrug resistant (MDR) cells expressing p-glycoprotein. Cells treated with SRJ09 (0.1-10μM) displayed increased p21 protein level, which corresponded with gene expression. Whereas CDK4 protein level and gene expression was suppressed. The treatment did not affect cyclin D1. Changes of these proteins paralleled G1 cell cycle arrest in both cell lines as determined by flow cytometry. Induction of apoptosis by SRJ09 in HCT-116 cells which occurred independent of p53 and bcl-2 was inhibited in the presence of caspase 8 inhibitor, implicating the extrinsic apoptotic pathway. A single dose (100mg/kg, i.p) of SRJ09 produced a plasma concentration range of 12-30.4μM. At 400mg/kg (q4dX3), it significantly retarded growth of tumor xenografts. The antitumor activity of SRJ09 is suggested mediated via the induction of p21 expression and suppression of CDK-4 expression without affecting cyclin D1 to trigger G1 arrest leading to apoptosis.
    Matched MeSH terms: Mice, Inbred BALB C
  17. Weng-Yew W, Selvaduray KR, Ming CH, Nesaretnam K
    Nutr Cancer, 2009;61(3):367-73.
    PMID: 19373610 DOI: 10.1080/01635580802582736
    Previous studies have revealed that tocotrienol-rich fractions (TRF) from palm oil inhibit the proliferation and the growth of solid tumors. The anticancer activity of TRF is said to be caused by several mechanisms, one of which is antiangiogenesis. In this study, we looked at the antiangiogenic effects of TRF. In vitro investigations of the antiangiogenic activities of TRF, delta-tocotrienol (deltaT3), and alpha-tocopherol (alphaToc) were carried out in human umbilical vein endothelial cells (HUVEC). TRF and deltaT3 significantly inhibited cell proliferation from 4 microg/ml onward (P < 0.05). Cell migration was inhibited the most by deltaT3 at 12 microg/ml. Anti-angiogenic properties of TRF were carried out further in vivo using the chick embryo chorioallantoic membrane (CAM) assay and BALB/c mice model. TRF at 200 microg/ml reduced the vascular network on CAM. TRF treatment of 1 mg/mouse significantly reduced 4T1 tumor volume in BALB/c mice. TRF significantly reduced serum vascular endothelial growth factor (VEGF) level in BALB/c mice. In conclusion, this study showed that palm tocotrienols exhibit anti-angiogenic properties that may assist in tumor regression.
    Matched MeSH terms: Mice, Inbred BALB C
  18. Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, et al.
    Pharmacol Res, 2021 Oct;172:105781.
    PMID: 34302975 DOI: 10.1016/j.phrs.2021.105781
    Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
    Matched MeSH terms: Mice, Inbred BALB C
  19. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Mice, Inbred BALB C
  20. Wan Mohd Zawawi WFA, Hibma MH, Salim MI, Jemon K
    Sci Rep, 2021 05 13;11(1):10278.
    PMID: 33986437 DOI: 10.1038/s41598-021-89740-0
    Breast cancer is the most common cancer that causes death in women. Conventional therapies, including surgery and chemotherapy, have different therapeutic effects and are commonly associated with risks and side effects. Near infrared radiation is a technique with few side effects that is used for local hyperthermia, typically as an adjuvant to other cancer therapies. The understanding of the use of near NIR as a monotherapy, and its effects on the immune cells activation and infiltration, are limited. In this study, we investigate the effects of HT treatment using NIR on tumor regression and on the immune cells and molecules in breast tumors. Results from this study demonstrated that local HT by NIR at 43 °C reduced tumor progression and significantly increased the median survival of tumor-bearing mice. Immunohistochemical analysis revealed a significant reduction in cells proliferation in treated tumor, which was accompanied by an abundance of heat shock protein 70 (Hsp70). Increased numbers of activated dendritic cells were observed in the draining lymph nodes of the mice, along with infiltration of T cells, NK cells and B cells into the tumor. In contrast, tumor-infiltrated regulatory T cells were largely diminished from the tumor. In addition, higher IFN-γ and IL-2 secretion was observed in tumor of treated mice. Overall, results from this present study extends the understanding of using local HT by NIR to stimulate a favourable immune response against breast cancer.
    Matched MeSH terms: Mice, Inbred BALB C
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links