OBJECTIVES: To evaluate thermotolerance and antifungal susceptibility of feline Malaysian Sporothrix isolates, compare microdilution (MD) and E-test results, and investigate changes in susceptibility during azole therapy.
METHODS: Sporothrix schenckii sensu stricto was isolated from 44 cats. Thermotolerance was determined via culture at 37°C for 7 days. Susceptibility to itraconazole (ITZ), ketoconazole (KTZ) and terbinafine (TRB) was assessed in 40 isolates by MD; to amphotericin B (AMB), KTZ, ITZ, fluconazole (FLC) and posaconazole (POS) by E-test. Results were statistically compared by Pearson's Product Moment. In eight ketoconazole treated cats, susceptibility testing to itraconazole and ketoconazole was repeated every two months for six months.
RESULTS: Thermotolerance was observed in 36 of 44 (82%) isolates. Assuming that isolates growing at antifungal concentrations ≥4 mg/mL were resistant, all were resistant on E-test to FLC and AMB, 11 (28%) to POS, 6 (15%) to ITZ and 1 (3%) to KTZ. On MD, 27 of 40 (68%) were resistant to TRB, 2 (5%) to ITZ and 3 (8%) to KTZ. There was no correlation between E-test and MD results (KTZ r = 0.10, P = 0.54, and ITZ r = 0.11, P = 0.48). MD values for ITZ and KTZ did not exceed 4 mg/L during KTZ therapy.
CONCLUSION: The majority of feline isolates in Malaysia are thermosensitive. Lack of correlation between E-test and MD suggests that the E-test is unreliable to test antifungal susceptibility for Sporothrix spp. compared to MD. KTZ was the antifungal drug with the lowest MIC. Prolonged KTZ administration may not induce changes in antifungal susceptibility.
MATERIALS AND METHODS: A total of 103 patients from the Chest Clinic of Hospital Tengku Ampuan Rahimah with sputum smears positive for acid-fast bacilli were included in this cross-sectional study. All sputa were tested using Xpert MTB/RIF to confirm the presence of M. tuberculosis complex and detect rifampicin resistance. Sputa were also sent to a respiratory medicine institute for mycobacterial culture. Positive cultures were then submitted to a reference laboratory, where isolates identified as M. tuberculosis complex underwent drug susceptibility testing (DST).
RESULTS: A total of 58 (56.3%) patients were newly diagnosed and 45 (43.7%) patients were previously treated. Xpert MTB/RIF was able to detect rifampicin resistance with a sensitivity and specificity of 87.5% and 98.9%, respectively. Assuming that a single resistant result from Xpert MTB/RIF or any DST method was sufficient to denote resistance, a total of 8/103 patients had rifampicinresistant M. tuberculosis. All eight patients were previously treated for PTB (p<0.05). The overall prevalence of rifampicin resistance among smear-positive PTB patients was 7.8%, although it was 17.8% among the previously treated ones.
CONCLUSION: The local prevalence of rifampicin-resistant M. tuberculosis was particularly high among previously treated patients. Xpert MTB/RIF can be employed in urban district health facilities not only to diagnose PTB in smear-positive patients, but also to detect rifampicin resistance with good sensitivity and specificity.
METHODOLOGY: One hundred and twenty clinical isolates of S. pneumoniae were obtained from patients of University Malaya Medical Centre (UMMC). The strains were screened using a multiplex real-time PCR method for the presence of alterations in the genes encoding the penicillin binding proteins: pbp2b, macrolide resistance determinant ermB and the pneumolysin gene, ply. Dual-labelled Taqman probes were used in the real-time detection method comprising three different genes labeled with individual fluorophores at different wavelengths. One hundred and twenty isolates from bacterial cultures and isolates directly from blood cultures samples were analyzed using this assay.
RESULTS: A multiplex PCR comprising the antibiotic resistance genes, ermB and and pneumolysin gene (ply), a S. pneumoniae species specific gene, was developed to characterize strains of S. pneumoniae. Out of the 120 pneumococcal isolates, 58 strains were categorized as Penicillin Sensitive Streptococcus pneumoniae (PSSP), 36 as Penicillin Intermediate Streptococcus pneumoniae (PISP) and 26 as Penicillin Resistant Streptococcus pneumoniae (PRSP). All the 58 PSSP strains harboured the pbp2b gene while the 36 PISP and 26 PRSP strains did not harbour this gene, thus suggesting reduced susceptibility to penicillin. Resistance to erythromycin was observed in 47 of the pneumococcal strains while 15 and 58 were intermediate and sensitive to this drug respectively. Susceptibility testing to other beta-lactams (CTX and CRO) also showed reduced susceptibility among the strains within the PISP and PRSP groups but most PSSP strains were sensitive to other antibiotics.
CONCLUSION: The characterization of pneumococcal isolates for penicillin and erythromycin resistance genes could be useful to predict the susceptibility of these isolates to other antibiotics, especially beta-lactams drugs. We have developed an assay with a shorter turnaround time to determine the species and resistance profile of Streptococcus pneumoniae with respect to penicillin and macrolides using the Real Time PCR format with fluorescent labeled Taqman probes, hence facilitating earlier and more definitive antimicrobial therapy which may lead to better patient management.