Displaying publications 21 - 40 of 249 in total

Abstract:
Sort:
  1. Islam MA, Sundaraj K, Ahmad RB, Ahamed NU
    PLoS One, 2013;8(3):e58902.
    PMID: 23536834 DOI: 10.1371/journal.pone.0058902
    BACKGROUND: Mechanomyography (MMG) has been extensively applied in clinical and experimental practice to examine muscle characteristics including muscle function (MF), prosthesis and/or switch control, signal processing, physiological exercise, and medical rehabilitation. Despite several existing MMG studies of MF, there has not yet been a review of these. This study aimed to determine the current status on the use of MMG in measuring the conditions of MFs.

    METHODOLOGY/PRINCIPAL FINDINGS: Five electronic databases were extensively searched for potentially eligible studies published between 2003 and 2012. Two authors independently assessed selected articles using an MS-Word based form created for this review. Several domains (name of muscle, study type, sensor type, subject's types, muscle contraction, measured parameters, frequency range, hardware and software, signal processing and statistical analysis, results, applications, authors' conclusions and recommendations for future work) were extracted for further analysis. From a total of 2184 citations 119 were selected for full-text evaluation and 36 studies of MFs were identified. The systematic results find sufficient evidence that MMG may be used for assessing muscle fatigue, strength, and balance. This review also provides reason to believe that MMG may be used to examine muscle actions during movements and for monitoring muscle activities under various types of exercise paradigms.

    CONCLUSIONS/SIGNIFICANCE: Overall judging from the increasing number of articles in recent years, this review reports sufficient evidence that MMG is increasingly being used in different aspects of MF. Thus, MMG may be applied as a useful tool to examine diverse conditions of muscle activity. However, the existing studies which examined MMG for MFs were confined to a small sample size of healthy population. Therefore, future work is needed to investigate MMG, in examining MFs between a sufficient number of healthy subjects and neuromuscular patients.

    Matched MeSH terms: Muscle, Skeletal/physiology*
  2. Htwe O, Swarhib M, Pei TS, Naicker AS, Das S
    Rom J Morphol Embryol, 2012;53(3):657-9.
    PMID: 22990563
    Congenital bilateral agenesis of the tibialis anterior muscles is a rare condition. We present a case of congenital absence of bilateral tibialis anterior muscles in a 6-year-old boy who presented with an abnormal gait. He was previously diagnosed to have bilateral congenital talipes equinovarus (CTEV) deformity for which he underwent corrective surgery two times. However, he still had a residual foot problem and claimed to have difficulty in walking. On examination, he walked with a high stepping gait and muscle power of both lower limbs was 5/5 on the medical research council scale (MRCS) except for both ankle dorsiflexors and long toe extensors. The sensation was intact. Magnetic Resonance Imaging (MRI) study of both legs revealed that tibialis anterior muscles were not visualized on both sides suggestive of agenesis of the tibialis anterior muscles. The rest of the muscles appeared mildly atrophied. The electrophysiological study showed normal motor and sensory conduction in both upper and lower limbs. Electromyographic (EMG) study of the vastus medialis was within normal limit and no response could be elicited for EMG of tibialis anterior muscles suggesting possible absence of tibialis anterior muscles, bilaterally. The patient underwent split tibialis posterior tendon transfer to achieve a balanced and functional foot and was well on discharge. The present case describes the normal anatomy and embryology of tibialis anterior muscles as well as possible causes of its agenesis along with its clinical implications.
    Matched MeSH terms: Muscle, Skeletal/abnormalities*
  3. Yeap EJ, Shamsul SA, Chong KW, Sands AK
    Foot Ankle Int, 2011 Aug;32(8):830-3.
    PMID: 22049872
    Matched MeSH terms: Muscle, Skeletal/surgery*
  4. B SN, Rodenbaugh DW
    Adv Physiol Educ, 2008 Jun;32(2):169-70.
    PMID: 18539862 DOI: 10.1152/advan.00106.2007
    Matched MeSH terms: Muscle, Skeletal/anatomy & histology
  5. Naik VR, Jaafar H, Mutum SS
    Malays J Pathol, 2005 Dec;27(2):119-21.
    PMID: 17191396
    Colonic adenocarcinoma metastasising to the skeletal muscle is rare. A-56-yr-old Malay man was diagnosed to have adenocarcinoma of the right colon [Dukes B] for which a right hemicolectomy was performed, followed by radiotherapy and chemotherapy. Five years later the patient presented with a mass in the rectus abdominis muscle. The serum carcinoembryonic antigen was 71 ng/Ml. The mass was resected. Gross and microscopical examination showed multiple deposits of mucin-secreting adenocarcinoma with prominent heterotopic ossification in the stroma. The exact pathogenesis and significance of heterotopic ossification is not clear, but bone morphogenetic proteins may play an important role.
    Matched MeSH terms: Muscle, Skeletal/pathology*
  6. Yap CM
    Med J Malaysia, 2005 Aug;60(3):364-6.
    PMID: 16379194
    Restoring the intestinal continuity of an acquired massive cervico-thoracic oesophagus defect is a reconstructive challenge. A case requiring such defect restoration following a failed pedicled colonic interposition bypass graft between the cervical oesophagus and stomach for an intra-thoracic oesophageal perforation is presented. The defect between the oesophagostome at the lower left neck and the stoma of the colonic stump at the lower left chest measured about 20 cm. An ante-thoracic skin-tube neo-esophagus was constructed in two stages using a pedicled contralateral right deltopectoral skin flap and a pedicled ipsilateral island left latissimus dorsi myocutaneous flap (LD MC flap). A normal swallowing mechanism was re-established.
    Matched MeSH terms: Muscle, Skeletal/surgery*
  7. Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM
    PLoS One, 2016;11(2):e0149024.
    PMID: 26859296 DOI: 10.1371/journal.pone.0149024
    BACKGROUND: Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance.

    METHODS: Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review.

    RESULTS: Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units.

    CONCLUSION: Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.

    Matched MeSH terms: Muscle, Skeletal/physiopathology
  8. Singh R, Singh HJ, Sirisinghe RG
    Br J Sports Med, 1995 Mar;29(1):13-5.
    PMID: 7788209
    Maximal oxygen consumption (VO2max) and maximal workload attained (WLmax) were determined in 28 Malaysian dragon boat rowers who were exercised to exhaustion on an arm ergometer. Mean VO2max was 2.75 l min-1 at a mean WLmax of 195.5 W. Anaerobic endurance power of the arms, determined by cranking at 100 RPM at a workload of 400 W and the time taken to maintain the cadence until it fell to 75 RPM, was 34.9(+/- 2.3) s. Leg performance, as determined by standing long jump and vertical jump, was 140.0(+/- 4.5) kg m and 100.3(+/- 3.1) kg m s-1 respectively. Right hand grip strength was significantly (p < 0.001) greater than the left hand. Percentage body fat of the rowers was 11.8(+/- 0.6)%. These values represent the first measurements of their kind performed on dragon boat rowers in Malaysia.
    Matched MeSH terms: Muscle, Skeletal/physiology
  9. Hussain J, Sundaraj K, Subramaniam ID, Lam CK
    J Musculoskelet Neuronal Interact, 2019 09 01;19(3):276-285.
    PMID: 31475934
    OBJECTIVE: The objective of this study was to investigate fatigue in the three heads of the triceps brachii (TB) muscle using surface electromyography (sEMG) obtained at 30%, 45% and 60% of maximal voluntary contraction (MVC).

    METHODS: Twenty-five subjects performed isometric elbow extension until failure, and the rate of fatigue (ROF), time to fatigue (TTF) and normalized TTF (NTTF) were statistically analysed. Subsequently, the behaviour of root-mean-square (RMS), mean-power frequency (MPF) and median-power frequency (MDF) under pre-, onset- and post-fatigue conditions were compared.

    RESULTS: The findings indicated that, among the heads, ROF was statistically significant at 30% and 45% MVC (P<0.05) but TTF and NTTF at all intensities was statistically insignificant (P>0.05). For every head, only TTF was statistically significant (P<0.05) at different intensities. MPF and MDF under pre-, onset- and post-fatigue conditions were statistically significant (P<0.05) among the heads at all intensities, whereas RMS showed no such behaviour.

    CONCLUSION: The investigated parameters reveal that the three heads of TB act independently before fatigue onset and appear to work in union after fatigue. Synergist head pairs exhibit similar spectral and temporal behaviour in contrast to the non-synergist TB head pair. We find spectral parameters to be more specific predictors of fatigue.

    Matched MeSH terms: Muscle, Skeletal/physiology*
  10. Talib I, Sundaraj K, Lam CK, Hussain J, Ali MA
    Eur J Appl Physiol, 2019 Jan;119(1):9-28.
    PMID: 30242464 DOI: 10.1007/s00421-018-3994-9
    PURPOSE: Crosstalk in myographic signals is a major hindrance to the understanding of local information related to individual muscle function. This review aims to analyse the problem of crosstalk in electromyography and mechanomyography.

    METHODS: An initial search of the SCOPUS database using an appropriate set of keywords yielded 290 studies, and 59 potential studies were selected after all the records were screened using the eligibility criteria. This review on crosstalk revealed that signal contamination due to crosstalk remains a major challenge in the application of surface myography techniques. Various methods have been employed in previous studies to identify, quantify and reduce crosstalk in surface myographic signals.

    RESULTS: Although correlation-based methods for crosstalk quantification are easy to use, there is a possibility that co-contraction could be interpreted as crosstalk. High-definition EMG has emerged as a new technique that has been successfully applied to reduce crosstalk.

    CONCLUSIONS: The phenomenon of crosstalk needs to be investigated carefully because it depends on many factors related to muscle task and physiology. This review article not only provides a good summary of the literature on crosstalk in myographic signals but also discusses new directions related to techniques for crosstalk identification, quantification and reduction. The review also provides insights into muscle-related issues that impact crosstalk in myographic signals.

    Matched MeSH terms: Muscle, Skeletal/physiology*
  11. Talib I, Sundaraj K, Lam CK, Sundaraj S
    J Musculoskelet Neuronal Interact, 2018 12 01;18(4):446-462.
    PMID: 30511949
    This systematic review aims to categorically analyses the literature on the assessment of biceps brachii (BB) muscle activity through mechanomyography (MMG). The application of our search criteria to five different databases identified 319 studies. A critical review of the 48 finally selected records, revealed the diversity of protocols and parameters that are employed in MMG-based assessments of BB muscle activity. The observations were categorized into the following: muscle torque, fatigue, strength and physiology. The available information on the muscle contraction protocol, sensor(s), MMG signal parameters and obtained results were then tabulated based on these categories for further analysis. The review affirms that - 1) MMG is suitable for skeletal muscle activity assessment and can be employed potentially for further investigation of the BB muscle activity and condition (e.g., force, torque, fatigue, and contractile properties), 2) a majority of the records focused on static contractions of the BB, and the analysis of dynamic muscle contractions using MMG is thus a research gap, and 3) very few studies have focused on the analysis of BB muscle activity under externally stimulated contractions. Taken together, the findings of this review on BB activity assessment using MMG affirm the potential of MMG as an alternative tool.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  12. Ku PX, Abu Osman NA, Wan Abas WAB
    J Biomech, 2016 Dec 08;49(16):3943-3948.
    PMID: 27865478 DOI: 10.1016/j.jbiomech.2016.11.006
    Balance control plays an important role in maintaining daily activity. However, studies on postural control among middle-aged adults are scarce. This study aims (i) to examine directional control (DCL) and electromyography activity (EMG) for different stability levels, and (ii) to determine left-right asymmetry for DCL and muscle activity among sedentary middle-aged adults. Twenty healthy, middle-aged adults (10 males, 10 females; age=50.0±7.5yrs; body height: 1.61±0.10m; body mass: 70.0±14.5kg) participated in the study. EMG for left and right side of rectus femoris (RF), biceps femoris (BF), and medial gastrocnemius (MG) were recorded. Two-way repeated measures analysis of variance was used to assess the effect of dynamic level on DCL and EMG, whereas independent sample t-test was conducted to analyse the asymmetries of DCL and EMG for the left and right leg. When the dynamic tilt surface increased, DCL scores significantly decreased (except forward, forward-rightward, and backward-leftward direction) and only RF muscle indicated significant differences. Left-right asymmetry was found in BF and MG muscles. No significant gender difference was observed in DCL and EMG. These data demonstrated that increased dynamic tilt surface may increase the displacement of center of pressure of certain directions, and stimulate RF activity in dynamic stance among sedentary middle-aged adults. Further studies should be conducted to examine the dynamic stance and muscle activity of the lower limb in age-matched patient groups with balance abnormalities.
    Matched MeSH terms: Muscle, Skeletal/physiology*
  13. Leduc-Gaudet JP, Franco-Romero A, Cefis M, Moamer A, Broering FE, Milan G, et al.
    Nat Commun, 2023 Mar 02;14(1):1199.
    PMID: 36864049 DOI: 10.1038/s41467-023-36817-1
    Autophagy is a critical process in the regulation of muscle mass, function and integrity. The molecular mechanisms regulating autophagy are complex and still partly understood. Here, we identify and characterize a novel FoxO-dependent gene, d230025d16rik which we named Mytho (Macroautophagy and YouTH Optimizer), as a regulator of autophagy and skeletal muscle integrity in vivo. Mytho is significantly up-regulated in various mouse models of skeletal muscle atrophy. Short term depletion of MYTHO in mice attenuates muscle atrophy caused by fasting, denervation, cancer cachexia and sepsis. While MYTHO overexpression is sufficient to trigger muscle atrophy, MYTHO knockdown results in a progressive increase in muscle mass associated with a sustained activation of the mTORC1 signaling pathway. Prolonged MYTHO knockdown is associated with severe myopathic features, including impaired autophagy, muscle weakness, myofiber degeneration, and extensive ultrastructural defects, such as accumulation of autophagic vacuoles and tubular aggregates. Inhibition of the mTORC1 signaling pathway in mice using rapamycin treatment attenuates the myopathic phenotype triggered by MYTHO knockdown. Skeletal muscles from human patients diagnosed with myotonic dystrophy type 1 (DM1) display reduced Mytho expression, activation of the mTORC1 signaling pathway and impaired autophagy, raising the possibility that low Mytho expression might contribute to the progression of the disease. We conclude that MYTHO is a key regulator of muscle autophagy and integrity.
    Matched MeSH terms: Muscle, Skeletal*
  14. Marconi G, Gopalai AA, Chauhan S
    Med Biol Eng Comput, 2023 May;61(5):1167-1182.
    PMID: 36689083 DOI: 10.1007/s11517-023-02778-2
    This simulation study aimed to explore the effects of mass and mass distribution of powered ankle-foot orthoses, on net joint moments and individual muscle forces throughout the lower limb. Using OpenSim inverse kinematics, dynamics, and static optimization tools, the gait cycles of ten subjects were analyzed. The biomechanical models of these subjects were appended with ideal powered ankle-foot orthoses of different masses and actuator positions, as to determine the effect that these design factors had on the subject's kinetics during normal walking. It was found that when the mass of the device was distributed more distally and posteriorly on the leg, both the net joint moments and overall lower limb muscle forces were more negatively impacted. However, individual muscle forces were found to have varying results which were attributed to the flow-on effect of the orthosis, the antagonistic pairing of muscles, and how the activity of individual muscles affect each other. It was found that mass and mass distribution of powered ankle-foot orthoses could be optimized as to more accurately mimic natural kinetics, reducing net joint moments and overall muscle forces of the lower limb, and must consider individual muscles as to reduce potentially detrimental muscle fatigue or muscular disuse. OpenSim modelling method to explore the effect of mass and mass distribution on muscle forces and joint moments, showing potential mass positioning and the effects of these positions, mass, and actuation on the muscle force integral.
    Matched MeSH terms: Muscle, Skeletal/physiology
  15. Ibitoye MO, Hamzaid NA, Ahmed YK
    Biomed Tech (Berl), 2023 Aug 28;68(4):329-350.
    PMID: 36852605 DOI: 10.1515/bmt-2021-0195
    Leg exercises through standing, cycling and walking with/without FES may be used to preserve lower limb muscle and bone health in persons with physical disability due to SCI. This study sought to examine the effectiveness of leg exercises on bone mineral density and muscle cross-sectional area based on their clinical efficacy in persons with SCI. Several literature databases were searched for potential eligible studies from the earliest return date to January 2022. The primary outcome targeted was the change in muscle mass/volume and bone mineral density as measured by CT, MRI and similar devices. Relevant studies indicated that persons with SCI that undertook FES- and frame-supported leg exercise exhibited better improvement in muscle and bone health preservation in comparison to those who were confined to frame-assisted leg exercise only. However, this observation is only valid for exercise initiated early (i.e., within 3 months after injury) and for ≥30 min/day for ≥ thrice a week and for up to 24 months or as long as desired and/or tolerable. Consequently, apart from the positive psychological effects on the users, leg exercise may reduce fracture rate and its effectiveness may be improved if augmented with FES.
    Matched MeSH terms: Muscle, Skeletal/physiology
  16. Uwamahoro R, Sundaraj K, Feroz FS
    Sensors (Basel), 2023 Sep 29;23(19).
    PMID: 37836995 DOI: 10.3390/s23198165
    Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle's response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test-retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative.
    Matched MeSH terms: Muscle, Skeletal/physiology
  17. Tan SH, Khong TK, Selvanayagam VS, Yusof A
    Eur J Appl Physiol, 2024 Feb;124(2):403-415.
    PMID: 38038740 DOI: 10.1007/s00421-023-05350-w
    Rinsing the mouth with a carbohydrate (CHO) solution has been shown to enhance exercise performance while reducing neuromuscular fatigue. This effect is thought to be mediated through the stimulation of oral receptors, which activate brain areas associated with reward, motivation, and motor control. Consequently, corticomotor responsiveness is increased, leading to sustained levels of neuromuscular activity prior to fatigue. In the context of endurance performance, the evidence regarding the central involvement of mouth rinse (MR) in performance improvement is not conclusive. Peripheral mechanisms should not be disregarded, particularly considering factors such as low exercise volume, the participant's fasting state, and the frequency of rinsing. These factors may influence central activations. On the other hand, for strength-related activities, changes in motor evoked potential (MEP) and electromyography (EMG) have been observed, indicating increased corticospinal responsiveness and neuromuscular drive during isometric and isokinetic contractions in both fresh and fatigued muscles. However, it is important to note that in many studies, MEP data were not normalised, making it difficult to exclude peripheral contributions. Voluntary activation (VA), another central measure, often exhibits a lack of changes, mainly due to its high variability, particularly in fatigued muscles. Based on the evidence, MR can attenuate neuromuscular fatigue and improve endurance and strength performance via similar underlying mechanisms. However, the evidence supporting central contribution is weak due to the lack of neurophysiological measures, inaccurate data treatment (normalisation), limited generalisation between exercise modes, methodological biases (ignoring peripheral contribution), and high measurement variability.Trial registration: PROSPERO ID: CRD42021261714.
    Matched MeSH terms: Muscle, Skeletal/physiology
  18. Rahman NA, Das S, Maatoq Sulaiman I, Hlaing KP, Haji Suhaimi F, Latiff AA, et al.
    Clin Ter, 2009;160(2):129-31.
    PMID: 19452102
    The sternalis is an anomalous muscle located in the anterior wall of thorax and several past reports have described its presence with clinical implications. The sternalis muscle may be incidentally detected during routine cadaveric dissections and autopsies. We observed the presence of anomalous sternalis muscle on both sides of the anterior chest wall in 25 cadavers (n = 50), over a span of three years. Out of a 50 cases, we observed a single case of sternalis on the right side of the 55-year-old male cadaver (2%). The sternalis was found to be absent in the rest 49 cases (98%). The sternalis muscle displayed an oblique course in the anterior wall of the thorax. The muscle originated near the seventh costal cartilage extending obliquely upwards to insert into the second costal cartilage close to the sternum. The originating portion of the muscle was located at a distance of 3.5 cm lateral to the mid-sternal plane. The vertical length and the maximum width of the anomalous sternalis muscle measured 9 cm and 1.9 cm, respectively. The fibers of the muscle vertically ascended upwards. No other associated anomalies were observed in the same cadaver. The presence of sternalis muscle is considered to be a rare variation with no earlier studies being performed in the Malaysian population. The anomalous sternalis muscle may be important for reconstructive surgeons performing mastectomy and radiologists interpreting mammograms. Thus, the sternalis muscle may be academically, anthropologically and surgically important.
    Matched MeSH terms: Muscle, Skeletal/abnormalities; Muscle, Skeletal/anatomy & histology*; Muscle, Skeletal/innervation
  19. Adeyemi KD, Shittu RM, Sabow AB, Ebrahimi M, Sazili AQ
    PLoS One, 2016;11(5):e0154603.
    PMID: 27138001 DOI: 10.1371/journal.pone.0154603
    This study appraised the effects of dietary blend of 80% canola oil and 20% palm oil and postmortem ageing on oxidative stability, fatty acids and quality attributes of gluteus medius (GM) muscle in goats. Twenty-four Boer bucks were randomly allotted to diet supplemented with 0, 4 and 8% oil blend, fed for 100 days and slaughtered, and the GM muscle was subjected to a 7 d chill storage (4±1°C). Diet had no effect (P> 0.05) on the colour, drip loss, thiobarbituric acid-reactive substances (TBARS) value, free thiol, carbonyl, myoglobin and metmyoglobin contents, metmyoglobin reducing activity (MRA), antioxidant enzyme activities and abundance of myosin heavy chain (MHC) and actin in the GM muscle in goats. The meat from goats fed 4 and 8% oil blend had higher (P< 0.05) concentration of α and γ-tocopherol and abundance of troponin T compared with that from the control goats. The GM muscle from the oil-supplemented goats had lower (P< 0.05) concentration of C16:0 and greater (P< 0.05) concentration of C18:1n-9, C18:3n-3 and C20:5n-3 compared with that from the control goats. Nonetheless, diet did not affect (P< 0.05) the total fatty acid in the GM muscle in goats. Regardless of the diet, the free thiol and myoglobin contents, concentration of tocopherol and total carotenoids, MHC and MRA in the GM muscle decreased (P< 0.05) while carbonyl content, TBARS, drip loss and metmyoglobin content increased over storage. Dietary blend of 80% canola oil and 20% palm oil beneficially altered tissue lipids without hampering the oxidative stability of chevon.
    Matched MeSH terms: Muscle, Skeletal/cytology; Muscle, Skeletal/metabolism*; Muscle, Skeletal/physiology
  20. Faridah Y, Abdullah BJ
    Hong Kong Med J, 2003 Apr;9(2):134-6.
    PMID: 12668827
    Magnetic resonance imaging is gaining importance in the diagnosis of nerve and muscular disorders. The ability of magnetic resonance imaging to delineate the different muscles and the nerve in any plane has made the differentiation between the changes of neuropathy, denervation, and nerve entrapment possible. Although findings on magnetic resonance imaging are non-specific, their use, coupled with clinical symptoms and electromyographic findings, allow an accurate diagnosis to be made without resorting to invasive biopsies.
    Matched MeSH terms: Muscle, Skeletal/innervation*; Muscle, Skeletal/pathology; Muscle, Skeletal/physiopathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links