METHODS: This study aimed to compile and synthesize the existing studies on the effects of PT on healthy athletes' technical skill performance. A comprehensive search of SCOPUS, PubMed, Web of Science Core Collection, and SPORTDiscus databases was performed on 3rd May 2023. PICOS was employed to establish the inclusion criteria: 1) healthy athletes; 2) a PT program; 3) compared a plyometric intervention to an active control group; 4) tested at least one measure of athletes' technical skill performance; and 5) randomized control designs. The methodological quality of each individual study was evaluated using the PEDro scale. The random-effects model was used to compute the meta-analyses. Subgroup analyses were performed (participant age, gender, PT length, session duration, frequency, and number of sessions). Certainty or confidence in the body of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE).
RESULTS: Thirty-two moderate-high-quality studies involving 1078 athletes aged 10-40 years met the inclusion criteria. The PT intervention lasted for 4 to 16 weeks, with one to three exercise sessions per week. Small-to-moderate effect sizes were found for performance of throwing velocity (i.e., handball, baseball, water polo) (ES = 0.78; p < 0.001), kicking velocity and distance (i.e., soccer) (ES = 0.37-0.44; all p < 0.005), and speed dribbling (i.e., handball, basketball, soccer) (ES = 0.85; p = 0.014), while no significant effects on stride rate (i.e., running) were noted (ES = 0.32; p = 0.137). Sub-analyses of moderator factors included 16 data sets. Only training length significantly modulated PT effects on throwing velocity (> 7 weeks, ES = 1.05; ≤ 7 weeks, ES = 0.29; p = 0.011). The level of certainty of the evidence for the meta-analyzed outcomes ranged from low to moderate.
CONCLUSION: Our findings have shown that PT can be effective in enhancing technical skills measures in youth and adult athletes. Sub-group analyses suggest that PT longer (> 7 weeks) lengths appear to be more effective for improving throwing velocity. However, to fully determine the effectiveness of PT in improving sport-specific technical skill outcomes and ultimately enhancing competition performance, further high-quality research covering a wider range of sports is required.
HYPOTHESIS: We hypothesized that 8 weeks of MIX will provoke the greatest improvements in falls risk factors, followed by similar improvements after BT and VR, relative to the CON.
STUDY DESIGN: Single-blinded randomized controlled trial NCT02778841 (ClinicalTrials.gov identifier).
LEVEL OF EVIDENCE: Level 2.
METHODS: In total, 64 community-dwelling older men (age 71.8 ± 6.09 years) were randomly assigned into BT, VR, MIX, and CON groups and tested at baseline and at the 8-week follow-up. The training groups exercised for 40 minutes, 3 times per week, for 8 weeks. Isokinetic quadriceps and hamstrings strength on the dominant and nondominant legs were primary outcomes measured by the Biodex Isokinetic Dynamometer. Secondary outcomes included 1-legged stance on firm and foam surfaces, tandem stance, the timed-up-and-go, and gait speed. Separate one-way analyses of covariance between groups were conducted for each outcome using baseline scores as covariates.
RESULTS: (1) MIX elicited greater improvements in strength, balance, and functional mobility relative to BT, VR, and CON; (2) VR exhibited better balance and functional mobility relative to BT and CON; and (3) BT demonstrated better balance and functional mobility relative to CON.
CONCLUSION: The moderate to large effect sizes in strength and large effect sizes for balance and functional mobility underline that MIX is an effective method to improve falls risk among older adults.
CLINICAL RELEVANCE: This study forms the basis for a larger trial powered for falls.
METHODS: PubMed, EMBASE, Medline, Cochrane Library, CINAHL, PEDro, and Airiti Library were searched from inception until May 5, 2023. Randomized controlled trials that examined exercise, vitamin D and protein supplementation effects on muscle mass, strength, and physical function. Quality assessment used the Cochrane risk of bias tool, and analysis employed Comprehensive Meta-Analysis version 2.0.
RESULTS: A total of 27 randomized controlled trials, involving 1,989 participants were identified. Meta-analysis results showed exercise improved lean body mass (SMD = 0.232, 95% CI: 0.097, 0.366), handgrip strength (SMD = 0.901, 95% CI: 0.362, 1.441), knee extension strength (SMD = 0.698, 95% CI: 0.384, 1.013). Resistance training had a small effect on lean body mass, longer exercise duration (> 12 weeks) and higher frequency (60-90 min, 3 sessions/week) showed small to moderate effects on lean body mass. Vitamin D supplementation improved handgrip strength (SMD = 0.303, 95% CI: 0.130, 0.476), but not knee extension strength. There was insufficient data to assess the impact of protein supplementation on muscle strength.
CONCLUSIONS: Exercise effectively improves muscle mass, and strength in menopausal women. Resistance training with 3 sessions per week, lasting 20-90 min for at least 6 weeks, is most effective. Vitamin D supplementation enhances small muscle group strength. Further trials are needed to assess the effects of vitamin D and protein supplementation on sarcopenia prevention.
REGISTRATION NUMBER: This review was registered on PROSPERO CRD42022329273.
Methods: Fifty-seven participants were assessed for their demographics and functional ability relating to the requirement for walking devices, including the Timed Up and Go Test (TUGT) and lower limb loading during sit-to-stand (LLL-STS).
Results: Thirty-five participants (61%) used a walking device, particularly a standard walker, for daily walking. More than half of them (n = 23, 66%) had potential of walking progression (i.e., safely walk with a less-support device than the usual one). The ability of walking progression was significantly associated with a mild severity of injury, increased lower-limb muscle strength, decreased time to complete the TUGT, and, in particular, increased LLL-STS.
Conclusion: A large proportion of ambulatory individuals with SCI have the potential for walking progression, which may increase their level of independence and minimise the appearance of disability. Strategies to promote LLL-STS are important for this progression.
BACKGROUND: The back squat is an integral aspect of any resistance training program to improve athletic performance. It is also used for injury prevention of the lower limbs.
OBJECTIVE: The purpose of this study was to examine the effect of back squat training at different intensities on strength and flexibility of the hamstring muscle group (HMG).
METHODS: Twenty-two male recreational bodybuilders with at least two years of experience in resistance training were recruited to participate in a nine-week training program. They were randomly assigned to a heavy back squat group (90-95% of one repetition maximum) or a moderate-intensity back squat group (60-65% of one repetition maximum).
RESULTS: The heavy back squat group resulted in a significantly (p < 0.001) increased in one repetition maximum strength but a significant (p < 0.001) reduction in HMG flexibility when compared to their counterparts. The results of the study indicate that while a heavy back squat training program is effective in improving strength, it has an adverse effect on the flexibility of the HMG.
CONCLUSION: The implication of this study is that there is a tradeoff between strength and flexibility and trainers should select the appropriate training protocols for their athletes to maximize athletic performance.