Displaying publications 21 - 40 of 262 in total

Abstract:
Sort:
  1. Ng WH, Ahmad Z
    Med J Malaysia, 1978 Dec;33(2):128-32.
    PMID: 755162
    Matched MeSH terms: Myocardial Infarction/physiopathology*
  2. Ganasegeran K, Rashid A
    Patient Prefer Adherence, 2017;11:1975-1985.
    PMID: 29263654 DOI: 10.2147/PPA.S151053
    Background: Although evidence-based practice has shown the benefits of prescribed cardioprotective drugs in post-myocardial infarction (MI) survivors, adherence rates remain suboptimal. The aim of this study was to determine the prevalence and factors associated with medication nonadherence among post-MI survivors in Malaysia.
    Materials and methods: This cross-sectional study was conducted from February to September 2016 among 242 post-MI survivors aged 24-96 years at the cardiology outpatient clinic in a Malaysian cardiac specialist center. The study utilized an interviewer-administered questionnaire that consisted of items adapted and modified from the validated Simplified Medication Adherence Questionnaire, sociodemographics, health factors, perceived barriers, and novel psychological attributes, which employed the modified Confusion, Hubbub, and Order Scale and the Verbal Denial in Myocardial Infarction questionnaire.
    Results: The prevalence of medication nonadherence was 74%. In the multivariable model, denial of illness (AOR 1.2, 95% CI 0.9-1.8; P=0.032), preference to traditional medicine (AOR 8.7, 95% CI 1.1-31.7; P=0.044), lack of information about illness (AOR 3.3, 95% CI 1.1-10.6; P=0.045), fear of side effects (AOR 6.4, 95% CI 2.5-16.6; P<0.001), and complex regimen (AOR 5.2, 95% CI 1.9-14.2; P=0.001) were statistically significant variables associated with medication nonadherence.
    Conclusion: The relatively higher medication-nonadherence rate in this study was associated with patient-, provider-, and therapy-related factors and the novel psychological attribute denial of illness. Future research should explore these factors using robust methodological techniques to determine temporality among these factors.
    Study site: Cardiology clinic, Serdang Hospital, Selangor, Malaysia
    Matched MeSH terms: Myocardial Infarction*
  3. Vyshnevska IR, Petyunina OV, Kopytsya MP, Bilchenko AO, Peteneva LL
    Pol Merkur Lekarski, 2023;51(1):21-29.
    PMID: 36960896 DOI: 10.36740/Merkur202301103
    OBJECTIVE: Aim of our study was to determine the role of the clinical and biochemical markers in predicting the outcomes at one year in patients with STEMI who have undergone primary PCI.

    PATIENTS AND METHODS: Materials and methods: The study included 165 patients admitted with STEMI within 12 hours of the onset of symptoms be¬tween January 2020 and August 2021. All patients underwent primary PCI according to the guidelines, followed by standard examination and treatment at the hospital. Blood samples for biomarker analysis (MMP-9, cTnI) and other routine tests were taken on admission. At six months after the event, all patients underwent clinical follow-up. Patients were contacted either by phone, through family members or their physicians 1 year after the event.

    RESULTS: Results: The composite endpoint reached 9% of patients at one-year follow-up. ROC analysis of MMP-9 with the one-year com¬posite endpoint showed an AUC=0.711, with 91.7% sensitivity, and 47.4% specificity, 95% CI - 0.604 to 0.802, p=0.0037. ROC analysis of EQ-5D questionnaire with the one-year composite endpoint showed AUC = 0.73, the 95% CI - 0.624 to 0.820, p< 0.0195, with sensitivity 54.5% and specificity 94.7%. A logistic regression model showed a statistical association with the com¬posite endpoint at one year after STEMI in both EQ-5D (OR=0.89, 95% CI: 0.8313- 0.9725, p=0.0079) and MMP-9 (OR=1.0151, 95% CI:1.0001-1.0304, p=0.0481).

    CONCLUSION: Conclusions: The level of MMP-9 more than 194 ng/ml and <55 points in EQ-5D predicts major adverse cardiovascular events, in¬cluding cardiovascular mortality and progressive heart failure, as well as other elements of composite endpoints, during a 1-year follow-up in patients with STEMI after primary PCI. Future studies are needed to clarify this result.

    Matched MeSH terms: Myocardial Infarction*
  4. Hudson J, Cruickshank M, Quinton R, Aucott L, Aceves-Martins M, Gillies K, et al.
    Lancet Healthy Longev, 2022 Jun;3(6):e381-e393.
    PMID: 35711614 DOI: 10.1016/S2666-7568(22)00096-4
    BACKGROUND: Testosterone is the standard treatment for male hypogonadism, but there is uncertainty about its cardiovascular safety due to inconsistent findings. We aimed to provide the most extensive individual participant dataset (IPD) of testosterone trials available, to analyse subtypes of all cardiovascular events observed during treatment, and to investigate the effect of incorporating data from trials that did not provide IPD.

    METHODS: We did a systematic review and meta-analysis of randomised controlled trials including IPD. We searched MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, MEDLINE Epub Ahead of Print, Embase, Science Citation Index, the Cochrane Controlled Trials Register, Cochrane Database of Systematic Reviews, and Database of Abstracts of Review of Effects for literature from 1992 onwards (date of search, Aug 27, 2018). The following inclusion criteria were applied: (1) men aged 18 years and older with a screening testosterone concentration of 12 nmol/L (350 ng/dL) or less; (2) the intervention of interest was treatment with any testosterone formulation, dose frequency, and route of administration, for a minimum duration of 3 months; (3) a comparator of placebo treatment; and (4) studies assessing the pre-specified primary or secondary outcomes of interest. Details of study design, interventions, participants, and outcome measures were extracted from published articles and anonymised IPD was requested from investigators of all identified trials. Primary outcomes were mortality, cardiovascular, and cerebrovascular events at any time during follow-up. The risk of bias was assessed using the Cochrane Risk of Bias tool. We did a one-stage meta-analysis using IPD, and a two-stage meta-analysis integrating IPD with data from studies not providing IPD. The study is registered with PROSPERO, CRD42018111005.

    FINDINGS: 9871 citations were identified through database searches and after exclusion of duplicates and of irrelevant citations, 225 study reports were retrieved for full-text screening. 116 studies were subsequently excluded for not meeting the inclusion criteria in terms of study design and characteristics of intervention, and 35 primary studies (5601 participants, mean age 65 years, [SD 11]) reported in 109 peer-reviewed publications were deemed suitable for inclusion. Of these, 17 studies (49%) provided IPD (3431 participants, mean duration 9·5 months) from nine different countries while 18 did not provide IPD data. Risk of bias was judged to be low in most IPD studies (71%). Fewer deaths occurred with testosterone treatment (six [0·4%] of 1621) than placebo (12 [0·8%] of 1537) without significant differences between groups (odds ratio [OR] 0·46 [95% CI 0·17-1·24]; p=0·13). Cardiovascular risk was similar during testosterone treatment (120 [7·5%] of 1601 events) and placebo treatment (110 [7·2%] of 1519 events; OR 1·07 [95% CI 0·81-1·42]; p=0·62). Frequently occurring cardiovascular events included arrhythmia (52 of 166 vs 47 of 176), coronary heart disease (33 of 166 vs 33 of 176), heart failure (22 of 166 vs 28 of 176), and myocardial infarction (10 of 166 vs 16 of 176). Overall, patient age (interaction 0·97 [99% CI 0·92-1·03]; p=0·17), baseline testosterone (interaction 0·97 [0·82-1·15]; p=0·69), smoking status (interaction 1·68 [0·41-6·88]; p=0.35), or diabetes status (interaction 2·08 [0·89-4·82; p=0·025) were not associated with cardiovascular risk.

    INTERPRETATION: We found no evidence that testosterone increased short-term to medium-term cardiovascular risks in men with hypogonadism, but there is a paucity of data evaluating its long-term safety. Long-term data are needed to fully evaluate the safety of testosterone.

    FUNDING: National Institute for Health Research Health Technology Assessment Programme.

    Matched MeSH terms: Myocardial Infarction*
  5. Tsan SEH, Viknaswaran NL, Cheong CC, Cheah S, Ng KT, Mong SXY, et al.
    Anaesthesia, 2023 Sep;78(9):1153-1161.
    PMID: 37314744 DOI: 10.1111/anae.16058
    Tranexamic acid is an antifibrinolytic drug that is widely used during surgery, but there are concerns about its thromboembolic effects. We aimed to investigate the effect of prophylactic intravenous tranexamic acid on thromboembolic outcomes in patients undergoing non-cardiac surgery. The MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials were searched. Randomised controlled trials comparing intravenous tranexamic acid with placebo or no treatment in patients undergoing non-cardiac surgery were included. The primary outcome was a composite of peri-operative cardiovascular thromboembolic events, defined as any deep vein thrombosis, pulmonary embolism, myocardial ischaemia/infarction or cerebral ischaemia/infarction. A total of 191 randomised controlled trials (40,621 patients) were included in the review. The primary outcome occurred in 4.5% of patients receiving intravenous tranexamic acid compared with 4.9% of patients in the control group. Our analysis showed that there was no difference between groups for composite cardiovascular thromboembolic events (risk ratio 1.02, 95%CI 0.94-1.11, p = 0.65, I2 0%, n = 37,512). This finding remained robust when sensitivity analysis was performed with continuity correction and in studies with a low risk of bias. However, in trial sequential analysis, our meta-analysis only achieved 64.6% of the required information size. There was no association between intravenous tranexamic acid and seizure rate or mortality rate within 30 days. Intravenous tranexamic acid was associated with a reduced blood transfusion rate compared with control (9.9% vs. 19.4%, risk ratio 0.46, 95%CI 0.41-0.51, p 
    Matched MeSH terms: Myocardial Infarction*
  6. Chong B, Jayabaskaran J, Ruban J, Goh R, Chin YH, Kong G, et al.
    Circ Cardiovasc Imaging, 2023 May;16(5):e015159.
    PMID: 37192298 DOI: 10.1161/CIRCIMAGING.122.015159
    BACKGROUND: Epicardial adipose tissue (EAT) has garnered attention as a prognostic and risk stratification factor for cardiovascular disease. This study, via meta-analyses, evaluates the associations between EAT and cardiovascular outcomes stratified across imaging modalities, ethnic groups, and study protocols.

    METHODS: Medline and Embase databases were searched without date restriction on May 2022 for articles that examined EAT and cardiovascular outcomes. The inclusion criteria were (1) studies measuring EAT of adult patients at baseline and (2) reporting follow-up data on study outcomes of interest. The primary study outcome was major adverse cardiovascular events. Secondary study outcomes included cardiac death, myocardial infarction, coronary revascularization, and atrial fibrillation.

    RESULTS: Twenty-nine articles published between 2012 and 2022, comprising 19 709 patients, were included in our analysis. Increased EAT thickness and volume were associated with higher risks of cardiac death (odds ratio, 2.53 [95% CI, 1.17-5.44]; P=0.020; n=4), myocardial infarction (odds ratio, 2.63 [95% CI, 1.39-4.96]; P=0.003; n=5), coronary revascularization (odds ratio, 2.99 [95% CI, 1.64-5.44]; P<0.001; n=5), and atrial fibrillation (adjusted odds ratio, 4.04 [95% CI, 3.06-5.32]; P<0.001; n=3). For 1 unit increment in the continuous measure of EAT, computed tomography volumetric quantification (adjusted hazard ratio, 1.74 [95% CI, 1.42-2.13]; P<0.001) and echocardiographic thickness quantification (adjusted hazard ratio, 1.20 [95% CI, 1.09-1.32]; P<0.001) conferred an increased risk of major adverse cardiovascular events.

    CONCLUSIONS: The utility of EAT as an imaging biomarker for predicting and prognosticating cardiovascular disease is promising, with increased EAT thickness and volume being identified as independent predictors of major adverse cardiovascular events.

    REGISTRATION: URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42022338075.

    Matched MeSH terms: Myocardial Infarction*
  7. Karim B, Alwi I, Pasaribu MM, Nafrialdi, Yamin M, Harimurti K, et al.
    Med J Malaysia, 2024 Mar;79(2):146-150.
    PMID: 38553918
    INTRODUCTION: ST-segment elevation myocardial infarction (STEMI) is a fatal disease with significant burden worldwide. Despite advanced medical treatment performed, STEMIrelated morbidity and mortality remains high due to ischemia reperfusion injury after primary angioplasty mediated by NLRP3 inflammasome. Adding colchicine expected to reduce inflammation both in vitro and in vivo. We want to evaluate the effect of colchicine administration on the NLRP3 level of STEMI patient who undergo primary cutaneous intervention (PCI).

    MATERIALS AND METHODS: Randomised controlled trial was conducted on STEMI patients who undergo PCI in two hospitals in Jakarta, 104 patients enrolled to this study, and 77 patients completed the trial. 37 patients were randomly assigned to receive colchicines (2 mg loading dose; 0.5 mg thereafter every 12 hour for 48 hours) while 40 patients received placebo. NLRP3 level was measured from venous blood at baseline (BL), after procedure (AP), dan 24-hour post procedure (24H).

    RESULTS: No NLRP3 difference was observed initially between colchicine arm and placebo arm 38,69 and 39,0138, respectively (p >0.05). Measurement conducted at 24H, patients received colchicine demonstrate reduction in NLRP3 level (37.67), while placebo arm results increase in NLRP3 level (42.89) despite not statistically significant (p >0,05).

    CONCLUSION: Colchicine addition to standard treatment of STEMI patients undergo PCI reduce NLRP3 level despite statistically insignificant.

    Matched MeSH terms: Myocardial Infarction*
  8. Kasim S, Amir Rudin PNF, Malek S, Aziz F, Wan Ahmad WA, Ibrahim KS, et al.
    PLoS One, 2024;19(2):e0298036.
    PMID: 38358964 DOI: 10.1371/journal.pone.0298036
    BACKGROUND: Traditional risk assessment tools often lack accuracy when predicting the short- and long-term mortality following a non-ST-segment elevation myocardial infarction (NSTEMI) or Unstable Angina (UA) in specific population.

    OBJECTIVE: To employ machine learning (ML) and stacked ensemble learning (EL) methods in predicting short- and long-term mortality in Asian patients diagnosed with NSTEMI/UA and to identify the associated features, subsequently evaluating these findings against established risk scores.

    METHODS: We analyzed data from the National Cardiovascular Disease Database for Malaysia (2006-2019), representing a diverse NSTEMI/UA Asian cohort. Algorithm development utilized in-hospital records of 9,518 patients, 30-day data from 7,133 patients, and 1-year data from 7,031 patients. This study utilized 39 features, including demographic, cardiovascular risk, medication, and clinical features. In the development of the stacked EL model, four base learner algorithms were employed: eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF), with the Generalized Linear Model (GLM) serving as the meta learner. Significant features were chosen and ranked using ML feature importance with backward elimination. The predictive performance of the algorithms was assessed using the area under the curve (AUC) as a metric. Validation of the algorithms was conducted against the TIMI for NSTEMI/UA using a separate validation dataset, and the net reclassification index (NRI) was subsequently determined.

    RESULTS: Using both complete and reduced features, the algorithm performance achieved an AUC ranging from 0.73 to 0.89. The top-performing ML algorithm consistently surpassed the TIMI risk score for in-hospital, 30-day, and 1-year predictions (with AUC values of 0.88, 0.88, and 0.81, respectively, all p < 0.001), while the TIMI scores registered significantly lower at 0.55, 0.54, and 0.61. This suggests the TIMI score tends to underestimate patient mortality risk. The net reclassification index (NRI) of the best ML algorithm for NSTEMI/UA patients across these periods yielded an NRI between 40-60% (p < 0.001) relative to the TIMI NSTEMI/UA risk score. Key features identified for both short- and long-term mortality included age, Killip class, heart rate, and Low-Molecular-Weight Heparin (LMWH) administration.

    CONCLUSIONS: In a broad multi-ethnic population, ML approaches outperformed conventional TIMI scoring in classifying patients with NSTEMI and UA. ML allows for the precise identification of unique characteristics within individual Asian populations, improving the accuracy of mortality predictions. Continuous development, testing, and validation of these ML algorithms holds the promise of enhanced risk stratification, thereby revolutionizing future management strategies and patient outcomes.

    Matched MeSH terms: ST Elevation Myocardial Infarction*
  9. Li S, Lear SA, Rangarajan S, Hu B, Yin L, Bangdiwala SI, et al.
    JAMA Cardiol, 2022 Aug 01;7(8):796-807.
    PMID: 35704349 DOI: 10.1001/jamacardio.2022.1581
    IMPORTANCE: High amounts of sitting time are associated with increased risks of cardiovascular disease (CVD) and mortality in high-income countries, but it is unknown whether risks also increase in low- and middle-income countries.

    OBJECTIVE: To investigate the association of sitting time with mortality and major CVD in countries at different economic levels using data from the Prospective Urban Rural Epidemiology study.

    DESIGN, SETTING, AND PARTICIPANTS: This population-based cohort study included participants aged 35 to 70 years recruited from January 1, 2003, and followed up until August 31, 2021, in 21 high-income, middle-income, and low-income countries with a median follow-up of 11.1 years.

    EXPOSURES: Daily sitting time measured using the International Physical Activity Questionnaire.

    MAIN OUTCOMES AND MEASURES: The composite of all-cause mortality and major CVD (defined as cardiovascular death, myocardial infarction, stroke, or heart failure).

    RESULTS: Of 105 677 participants, 61 925 (58.6%) were women, and the mean (SD) age was 50.4 (9.6) years. During a median follow-up of 11.1 (IQR, 8.6-12.2) years, 6233 deaths and 5696 major cardiovascular events (2349 myocardial infarctions, 2966 strokes, 671 heart failure, and 1792 cardiovascular deaths) were documented. Compared with the reference group (<4 hours per day of sitting), higher sitting time (≥8 hours per day) was associated with an increased risk of the composite outcome (hazard ratio [HR], 1.19; 95% CI, 1.11-1.28; Pfor trend < .001), all-cause mortality (HR, 1.20; 95% CI, 1.10-1.31; Pfor trend < .001), and major CVD (HR, 1.21; 95% CI, 1.10-1.34; Pfor trend < .001). When stratified by country income levels, the association of sitting time with the composite outcome was stronger in low-income and lower-middle-income countries (≥8 hours per day: HR, 1.29; 95% CI, 1.16-1.44) compared with high-income and upper-middle-income countries (HR, 1.08; 95% CI, 0.98-1.19; P for interaction = .02). Compared with those who reported sitting time less than 4 hours per day and high physical activity level, participants who sat for 8 or more hours per day experienced a 17% to 50% higher associated risk of the composite outcome across physical activity levels; and the risk was attenuated along with increased physical activity levels.

    CONCLUSIONS AND RELEVANCE: High amounts of sitting time were associated with increased risk of all-cause mortality and CVD in economically diverse settings, especially in low-income and lower-middle-income countries. Reducing sedentary time along with increasing physical activity might be an important strategy for easing the global burden of premature deaths and CVD.

    Matched MeSH terms: Myocardial Infarction*
  10. de Carvalho LP, Gao F, Chen Q, Hartman M, Sim LL, Koh TH, et al.
    Eur Heart J Acute Cardiovasc Care, 2014 Dec;3(4):354-62.
    PMID: 24598820 DOI: 10.1177/2048872614527007
    the purpose of this study was to investigate differences in long-term mortality following acute myocardial infarction (AMI) in patients from three major ethnicities of Asia.
    Matched MeSH terms: Myocardial Infarction/ethnology; Myocardial Infarction/mortality; Myocardial Infarction/therapy
  11. Chong E, Shen L, Tan HC, Poh KK
    Med J Malaysia, 2011 Aug;66(3):249-52.
    PMID: 22111450
    Thrombolysis in Myocardial Infarction (TIMI) score has been used to predict outcomes in patients presenting with unstable angina (UA) and non-ST elevation myocardial infarction (NSTEMI). Our study assessed other clinical predictors for patients with UA/NSTEMI undergoing early percutaneous coronary intervention (PCI).
    Matched MeSH terms: Myocardial Infarction/complications*; Myocardial Infarction/mortality; Myocardial Infarction/therapy*
  12. Azarisman SM, Carbone A, Shirazi M, Bradley J, Teo KS, Worthley MI, et al.
    Heart Lung Circ, 2016 Nov;25(11):1094-1106.
    PMID: 27210302 DOI: 10.1016/j.hlc.2016.03.011
    BACKGROUND: Cardiovascular magnetic resonance (CMR) advances in imaging techniques, permits the ability to accurately characterise tissue injury post myocardial infarction. Pre-contrast T1 mapping enables this through measurement of pre-contrast T1 relaxation times. We investigate the relationship between T1 characterisation of myocardial injury with global and regional diastolic function.

    METHODS: Revascularised acute myocardial infarction patients with normal left ventricular (LV) systolic function on TTE were assessed by 1.5T CMR. Acute regional diastolic wall motion abnormalities, global diastolic function measurements, acute segmental damage fraction with LGE and mean segmental pre-contrast T1 values were assessed on matching short axis slices.

    RESULTS: Forty-four patients were analysed. Mean LVEF was 62.1±9.4%. No difference between NSTEMI (22/44) and STEMI in mean pre-contrast T1 values of infarcted (1025.0±109.2 vs 1011.0±81.6ms, p=0.70), adjacent (948.3±45.3 vs 941.1±46.6ms, p=0.70) and remote (888.8±52.8 vs 881.2±54.5ms, p=0.66) segments was detected. There was no correlation between pre-contrast T1 of infarcted segments with global diastolic dysfunction (E/A, r(2)=0.216, p=0.06; S/D, r(2)=0.243, p=0.053; E/E', r(2)=0.240, p=0.072), but there was significantly positive, moderate correlation with circumferential diastolic strain rate, (r(2)=0.579, p<0.01) with excellent agreement and reproducibility.

    CONCLUSION: Cardiac magnetic resonance evaluation of pre-contrast T1 values revealed no difference between NSTEMI and STEMI patients in terms of tissue characterisation post-myocardial infarction. However, pre-contrast T1 of infarcted tissue is significantly correlated with regional diastolic circumferential strain rate.

    Matched MeSH terms: Myocardial Infarction/complications; Myocardial Infarction/physiopathology*; Myocardial Infarction/therapy
  13. Kannan P, Raman S, Ramani VS, Jeyamalar R
    Aust N Z J Obstet Gynaecol, 1993 Nov;33(4):424-6.
    PMID: 8179560
    Matched MeSH terms: Myocardial Infarction/diagnosis*; Myocardial Infarction/physiopathology; Myocardial Infarction/therapy
  14. Lee TJ, Roslan A, Teh KC, Ghazi A
    Eur Heart J Case Rep, 2019 Jun 01;3(2).
    PMID: 31449618 DOI: 10.1093/ehjcr/ytz056
    BACKGROUND: Intramyocardial dissecting haematoma is a rare complication of myocardial infarction (MI) associated with high mortality rates. Studies and research of this occurrence are limited largely to isolated case reports or case series.

    CASE SUMMARY: We report a case of late presenting MI, where on initial echocardiogram had what was thought to be an intraventricular clot. However, upon further evaluation, the patient actually had an intramyocardial haematoma, with the supporting echocardiographic features to distinguish it from typical left ventricular (LV) clot. While this prevented the patient from receiving otherwise unnecessary anticoagulation, this diagnosis also put him at a much higher risk of mortality. Despite exhaustive medical and supportive management, death as consequence of pump failure occurred after 2 weeks.

    DISCUSSION: This report highlights the features seen on echocardiography which support the diagnosis of an intramyocardial haematoma rather than an LV clot, notably the various acoustic densities, a well visualized myocardial dissecting tear leading into a neocavity filled with blood, and an independent endocardial layer seen above the haematoma. Based on this report, we wish to highlight the importance of differentiating intramyocardial haematomas from intraventricular clots in patients with recent MI.

    Matched MeSH terms: Myocardial Infarction
  15. Clinical Practice Guidelines: Management of Acute ST Segment Elevation Myocardial Infarction (STEMI), 4th Edition. Putrajaya: Ministry of Health, Malaysia; 2019

    Older versions:
    Clinical Practice Guidelines: Management of Acute ST Segment Elevation Myocardial Infarction (STEMI), 3rd Edition. Putrajaya: Ministry of Health, Malaysia; 2014
    Clinical Practice Guidelines: Management of Acute ST Segment Elevation Myocardial Infarction (STEMI), 2nd Edition. Putrajaya: Ministry of Health, Malaysia; 2007
    Clinical Practice Guidelines: Management of Acute ST Segment Elevation Myocardial Infarction (STEMI), First Edition. Putrajaya: Ministry of Health, Malaysia; 2001
    Keywords: CPG
    Matched MeSH terms: Myocardial Infarction
  16. Wickramatilake CM, Mohideen MR, Pathirana C
    Indian Heart J, 2017 02 12;69(2):291.
    PMID: 28460787 DOI: 10.1016/j.ihj.2017.02.002
    Matched MeSH terms: ST Elevation Myocardial Infarction/blood; ST Elevation Myocardial Infarction/diagnosis*; ST Elevation Myocardial Infarction/physiopathology
  17. Sharma M, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:341-356.
    PMID: 30049414 DOI: 10.1016/j.compbiomed.2018.07.005
    Myocardial infarction (MI), also referred to as heart attack, occurs when there is an interruption of blood flow to parts of the heart, due to the acute rupture of atherosclerotic plaque, which leads to damage of heart muscle. The heart muscle damage produces changes in the recorded surface electrocardiogram (ECG). The identification of MI by visual inspection of the ECG requires expert interpretation, and is difficult as the ECG signal changes associated with MI can be short in duration and low in magnitude. Hence, errors in diagnosis can lead to delay the initiation of appropriate medical treatment. To lessen the burden on doctors, an automated ECG based system can be installed in hospitals to help identify MI changes on ECG. In the proposed study, we develop a single-channel single lead ECG based MI diagnostic system validated using noisy and clean datasets. The raw ECG signals are taken from the Physikalisch-Technische Bundesanstalt database. We design a novel two-band optimal biorthogonal filter bank (FB) for analysis of the ECG signals. We present a method to design a novel class of two-band optimal biorthogonal FB in which not only the product filter but the analysis lowpass filter is also a halfband filter. The filter design problem has been composed as a constrained convex optimization problem in which the objective function is a convex combination of multiple quadratic functions and the regularity and perfect reconstruction conditions are imposed in the form linear equalities. ECG signals are decomposed into six subbands (SBs) using the newly designed wavelet FB. Following to this, discriminating features namely, fuzzy entropy (FE), signal-fractal-dimensions (SFD), and renyi entropy (RE) are computed from all the six SBs. The features are fed to the k-nearest neighbor (KNN). The proposed system yields an accuracy of 99.62% for the noisy dataset and an accuracy of 99.74% for the clean dataset, using 10-fold cross validation (CV) technique. Our MI identification system is robust and highly accurate. It can thus be installed in clinics for detecting MI.
    Matched MeSH terms: Myocardial Infarction
  18. Ling KH, Ng KS
    Singapore Med J, 2018 10;59(10):558-559.
    PMID: 30386861 DOI: 10.11622/smedj.2018130
    Matched MeSH terms: Myocardial Infarction/complications*; Myocardial Infarction/diagnosis*; Myocardial Infarction/therapy
  19. Foo CY, Reidpath DD, Chaiyakunapruk N
    Syst Rev, 2016 08 02;5(1):130.
    PMID: 27484905 DOI: 10.1186/s13643-016-0304-7
    BACKGROUND: Acute myocardial infarction (AMI) is a medical emergency in which sudden occlusion of coronary artery(ies) results in ischemia and necrosis of the cardiac tissues. Reperfusion therapies that aim at reopening the occluded artery remain the mainstay of treatment for AMI. Primary percutaneous coronary intervention (PCI), which enables the restoration of blood flow by reopening the occluded artery(ies) via a catheter with an inflatable balloon, is currently the preferred treatment for AMI with ST segment elevation (STEMI). The door-to-balloon (D2B) delay refers to the time interval counting from the arrival of a patient with STEMI at a hospital to the time of the balloon inflation (or stent deployment) that reopens the occluded artery(ies). Reducing this delay in primary PCI is thought to be an important strategy toward achieving better patient outcomes. Unfortunately, significant reduction of D2B delay in the USA over the last decade has not been shown to be associated with improved STEMI mortality. It has been suggested that the lack of impact could be due to the expanding use of primary PCI in STEMI as well as the survival cohort effect, leading to a shift toward a higher risk population receiving the procedure. Others have suggested that reduction in D2B delay may not be as impactful as expected, given that it only represents a small fraction of the total ischemic time. Although most existing evidence have pointed to the presence of a beneficial effect of shorter D2B delay, some inconsistencies however exist. This study aims to synthesize available evidence in order to answer the following questions: (1) what is the overall effect of D2B delay on clinical outcomes in patients with STEMI treated with primary PCI? (2) What factors explain the differences of the effect estimates among the studies? (3) What are the important strength and limitation of the existing body of evidence?

    METHOD: We will search PubMed/MEDLINE, EMBASE, ClinicalTrials.gov, WHO International Clinical Trials Registry, CINAHL Database, and the Cochrane Library using a predefined search strategy. Other sources of literature will include proceedings from the European Society of Cardiology, the American College of Cardiology, the American Heart Association, the EUROPCR, and the ProQuest Dissertations and Theses Database. We will include data from observational studies (case-control and cohort study design) and randomized control trials (that have investigated the relationship of D2B time and clinical outcome(s) in an adult (older than 18) STEMI population). Mortality (cardiac related and all-cause) and incidence heart failure (HF) have been prioritized as the primary outcomes. All eligible studies will be assessed for risk of bias using the Risk Of Bias in Non-randomized Studies - of Interventions tool. The Grading of Recommendations, Assessment, and Evaluation (GRADE) framework will be used to report the quality of evidence and strength of recommendations. We will proceed to analyze the data quantitatively if the pre-specified conditions are satisfied.

    DISCUSSION: Recent discussion on the negative findings of improved D2B delay over time being unrelated to better STEMI outcomes at the population level has reminded us of an important knowledge gap we have on this domain. This systematic review will serve to address some of these key questions not previously examined. Answers to these questions could clarify the controversies and offer empirical support for or against the suggested hypotheses.

    SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42015026069.

    Matched MeSH terms: Myocardial Infarction/diagnosis*; Myocardial Infarction/mortality; Myocardial Infarction/therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links