Displaying publications 21 - 40 of 472 in total

Abstract:
Sort:
  1. Saealal MS, Ibrahim MZ, Mulvaney DJ, Shapiai MI, Fadilah N
    PLoS One, 2022;17(12):e0278989.
    PMID: 36520851 DOI: 10.1371/journal.pone.0278989
    Deep learning is notably successful in data analysis, computer vision, and human control. Nevertheless, this approach has inevitably allowed the development of DeepFake video sequences and images that could be altered so that the changes are not easily or explicitly detectable. Such alterations have been recently used to spread false news or disinformation. This study aims to identify Deepfaked videos and images and alert viewers to the possible falsity of the information. The current work presented a novel means of revealing fake face videos by cascading the convolution network with recurrent neural networks and fully connected network (FCN) models. The system detection approach utilizes the eye-blinking state in temporal video frames. Notwithstanding, it is deemed challenging to precisely depict (i) artificiality in fake videos and (ii) spatial information within the individual frame through this physiological signal. Spatial features were extracted using the VGG16 network and trained with the ImageNet dataset. The temporal features were then extracted in every 20 sequences through the LSTM network. On another note, the pre-processed eye-blinking state served as a probability to generate a novel BPD dataset. This newly-acquired dataset was fed to three models for training purposes with each entailing four, three, and six hidden layers, respectively. Every model constitutes a unique architecture and specific dropout value. Resultantly, the model optimally and accurately identified tampered videos within the dataset. The study model was assessed using the current BPD dataset based on one of the most complex datasets (FaceForensic++) with 90.8% accuracy. Such precision was successfully maintained in datasets that were not used in the training process. The training process was also accelerated by lowering the computation prerequisites.
    Matched MeSH terms: Neural Networks (Computer)*
  2. Liu J, Yinchai W, Siong TC, Li X, Zhao L, Wei F
    PLoS One, 2022;17(12):e0278819.
    PMID: 36508410 DOI: 10.1371/journal.pone.0278819
    Deep Residual Networks (ResNets) are prone to overfitting in problems with uncertainty, such as intrusion detection problems. To alleviate this problem, we proposed a method that combines the Adaptive Neuro-fuzzy Inference System (ANFIS) and the ResNet algorithm. This method can make use of the advantages of both the ANFIS and ResNet, and alleviate the overfitting problem of ResNet. Compared with the original ResNet algorithm, the proposed method provides overlapped intervals of continuous attributes and fuzzy rules to ResNet, improving the fuzziness of ResNet. To evaluate the performance of the proposed method, the proposed method is realized and evaluated on the benchmark NSL-KDD dataset. Also, the performance of the proposed method is compared with the original ResNet algorithm and other deep learning-based and ANFIS-based methods. The experimental results demonstrate that the proposed method is better than that of the original ResNet and other existing methods on various metrics, reaching a 98.88% detection rate and 1.11% false alarm rate on the KDDTrain+ dataset.
    Matched MeSH terms: Neural Networks (Computer)*
  3. Ehteram M, Ahmed AN, Latif SD, Huang YF, Alizamir M, Kisi O, et al.
    Environ Sci Pollut Res Int, 2021 Jan;28(2):1596-1611.
    PMID: 32851519 DOI: 10.1007/s11356-020-10421-y
    There is a need to develop an accurate and reliable model for predicting suspended sediment load (SSL) because of its complexity and difficulty in practice. This is due to the fact that sediment transportation is extremely nonlinear and is directed by numerous parameters such as rainfall, sediment supply, and strength of flow. Thus, this study examined two scenarios to investigate the effectiveness of the artificial neural network (ANN) models and determine the sensitivity of the predictive accuracy of the model to specific input parameters. The first scenario proposed three advanced optimisers-whale algorithm (WA), particle swarm optimization (PSO), and bat algorithm (BA)-for the optimisation of the performance of artificial neural network (ANN) in accurately predicting the suspended sediment load rate at the Goorganrood basin, Iran. In total, 5 different input combinations were examined in various lag days of up to 5 days to make a 1-day-ahead SSL prediction. Scenario 2 introduced a multi-objective (MO) optimisation algorithm that utilises the same inputs from scenario 1 as a way of determining the best combination of inputs. Results from scenario 1 revealed that high accuracy levels were achieved upon utilisation of a hybrid ANN-WA model over the ANN-BA with an RMSE value ranging from 1 to 6%. Furthermore, the ANN-WA model performed better than the ANN-PSO with an accuracy improvement value of 5-20%. Scenario 2 achieved the highest R2 when ANN-MOWA was introduced which shows that hybridisation of the multi-objective algorithm with WA and ANN model significantly improves the accuracy of ANN in predicting the daily suspended sediment load.
    Matched MeSH terms: Neural Networks (Computer)*
  4. Ehteram M, Panahi F, Ahmed AN, Huang YF, Kumar P, Elshafie A
    Environ Sci Pollut Res Int, 2022 Feb;29(7):10675-10701.
    PMID: 34528189 DOI: 10.1007/s11356-021-16301-3
    Evaporation is a crucial component to be established in agriculture management and water engineering. Evaporation prediction is thus an essential issue for modeling researchers. In this study, the multilayer perceptron (MLP) was used for predicting daily evaporation. MLP model is as one of the famous ANN models with multilayers for predicting different target variables. A new strategy was used to enhance the accuracy of the MLP model. Three multi-objective algorithms, namely, the multi-objective salp swarm algorithm (MOSSA), the multi-objective crow algorithm (MOCA), and the multi-objective particle swarm optimization (MOPSO), were respectively and separately coupled to the MLP model for determining the model parameters, the best input combination, and the best activation function. In this study, three stations in Malaysia, namely, the Muadzam Shah (MS), the Kuala Terengganu (KT), and the Kuantan (KU), were selected for the prediction of the respective daily evaporation. The spacing (SP) and maximum spread (MS) indices were used to evaluate the quality of generated Pareto front (PF) by the algorithms. The lower SP and higher MS showed better PF for the models. It was observed that the MOSSA had higher MS and lower SP than the other algorithms, at all stations. The root means square error (RMSE), mean absolute error (MAE), percent bias (PBIAS), and Nash Sutcliffe efficiency (NSE) quantifiers were used to compare the ability of the models with each other. The MLP-MOSSA had reduced RMSE compared to the MLP-MOCA, MLP-MOPSO, and MLP models by 18%, 25%, and 35%, respectively, at the MS station. The MAE of the MLP-MOSSA was 2.7%, 4.1%, and 26%, respectively lower than those of the MLP-MOCA, MLP-MOPSO, and MLP models at the KU station. The MLP-MOSSA showed lower MAE than the MLP-MOCA, MLP-MOPSO, and MLP models by 16%, 18%, and 19%, respectively, at the KT station. An uncertainty analysis was performed based on the input and parameter uncertainty. The results indicated that the MLP-MOSSA had the lowest uncertainty among the models. Also, the input uncertainty was lower than the parameter uncertainty. The general results indicated that the MLP-MOSSA had the high efficiency for predicting evaporation.
    Matched MeSH terms: Neural Networks (Computer)*
  5. Ibrahim S, Abdul Wahab N
    Water Sci Technol, 2024 Apr;89(7):1701-1724.
    PMID: 38619898 DOI: 10.2166/wst.2024.099
    Hyperparameter tuning is an important process to maximize the performance of any neural network model. This present study proposed the factorial design of experiment for screening and response surface methodology to optimize the hyperparameter of two artificial neural network algorithms. Feed-forward neural network (FFNN) and radial basis function neural network (RBFNN) are applied to predict the permeate flux of palm oil mill effluent. Permeate pump and transmembrane pressure of the submerge membrane bioreactor system are the input variables. Six hyperparameters of the FFNN model including four numerical factors (neuron numbers, learning rate, momentum, and epoch numbers) and two categorical factors (training and activation function) are used in hyperparameter optimization. RBFNN includes two numerical factors such as a number of neurons and spreads. The conventional method (one-variable-at-a-time) is compared in terms of optimization processing time and the accuracy of the model. The result indicates that the optimal hyperparameters obtained by the proposed approach produce good accuracy with a smaller generalization error. The simulation results show an improvement of more than 65% of training performance, with less repetition and processing time. This proposed methodology can be utilized for any type of neural network application to find the optimum levels of different parameters.
    Matched MeSH terms: Neural Networks (Computer)*
  6. Yin LL, Qin YW, Hou Y, Ren ZJ
    Comput Intell Neurosci, 2022;2022:7825597.
    PMID: 35463225 DOI: 10.1155/2022/7825597
    At present, there are widespread financing difficulties in China's trade circulation industry. Supply chain finance can provide financing for small- and medium-sized enterprises in China's trade circulation industry, but it will produce financing risks such as credit risks. It is necessary to analyze the causes of the risks in the supply chain finance of the trade circulation industry and measure these risks by establishing a credit risk assessment system. In this article, a supply chain financial risk early warning index system is established, including 4 first-level indicators and 29 third-level indicators. Then, on the basis of the supply chain financial risk early warning index system, combined with the method of convolution neural network, the supply chain financial risk early warning model of trade circulation industry is constructed, and the evaluation index is measured by the method of principal component analysis. Finally, the relevant data of trade circulation enterprises are selected to make an empirical analysis of the model. The conclusion shows that the supply chain financial risk early warning model and risk control measures established in this article have certain reference value for the commercial circulation industry to carry out supply chain finance. It also provides guidance for trade circulation enterprises to deal with supply chain financial risks effectively.
    Matched MeSH terms: Neural Networks (Computer)*
  7. Chan Phooi M'ng J, Mehralizadeh M
    PLoS One, 2016;11(6):e0156338.
    PMID: 27248692 DOI: 10.1371/journal.pone.0156338
    The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today's increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong's Hang Seng futures, Japan's NIKKEI 225 futures, Singapore's MSCI futures, South Korea's KOSPI 200 futures, and Taiwan's TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis.
    Matched MeSH terms: Neural Networks (Computer)*
  8. Islam T, Hoque ME, Ullah M, Islam T, Nishu NA, Islam R
    Cancer Med, 2024 Aug;13(16):e70069.
    PMID: 39215495 DOI: 10.1002/cam4.70069
    OBJECTIVE: Breast cancer is one of the leading cancer causes among women worldwide. It can be classified as invasive ductal carcinoma (IDC) or metastatic cancer. Early detection of breast cancer is challenging due to the lack of early warning signs. Generally, a mammogram is recommended by specialists for screening. Existing approaches are not accurate enough for real-time diagnostic applications and thus require better and smarter cancer diagnostic approaches. This study aims to develop a customized machine-learning framework that will give more accurate predictions for IDC and metastasis cancer classification.

    METHODS: This work proposes a convolutional neural network (CNN) model for classifying IDC and metastatic breast cancer. The study utilized a large-scale dataset of microscopic histopathological images to automatically perceive a hierarchical manner of learning and understanding.

    RESULTS: It is evident that using machine learning techniques significantly (15%-25%) boost the effectiveness of determining cancer vulnerability, malignancy, and demise. The results demonstrate an excellent performance ensuring an average of 95% accuracy in classifying metastatic cells against benign ones and 89% accuracy was obtained in terms of detecting IDC.

    CONCLUSIONS: The results suggest that the proposed model improves classification accuracy. Therefore, it could be applied effectively in classifying IDC and metastatic cancer in comparison to other state-of-the-art models.

    Matched MeSH terms: Neural Networks (Computer)*
  9. Zulfiqar M, Chowdhury S, Omar AA, Siyal AA, Sufian S
    Environ Sci Pollut Res Int, 2020 Sep;27(27):34018-34036.
    PMID: 32557068 DOI: 10.1007/s11356-020-09674-4
    The primary responsibility for continuously discharging toxic organic pollutants into water bodies and open environments is the increase in industrial and agricultural activities. Developing economical and suitable methods to continuously remove organic pollutants from wastewater is highly essential. The aim of the present research was to apply response surface methodology (RSM) and artificial neural networks (ANNs) for optimization and modeling of photocatalytic degradation of acid orange 7 (AO7) by commercial TiO2-P25 nanoparticles (TNPs). Dose of TNPs, pH, and AO7 concentration were selected as investigated parameters. RSM results reveal the reflective rate of AO7 removal of ~ 94.974% was obtained at pH 7.599, TNP dose of 0.748 g/L, and AO7 concentration of 28.483 mg/L. The resulting quadratic model is satisfactory with the highest coefficient of determination (R2) between the predicted and experimental data (R2 = 0.98 and adjusted R2 = 0.954). On the other hand, ANNs were successfully employed for modeling of AO7 degradation process. The proposed ANN model was absolutely fitted with experimental results producing the highest R2. Furthermore, root mean square error (RMSE), mean average deviation (MAD), absolute average relative error (AARE), and mean square error (MSE) were examined more to compare the predictive capabilities of ANN and RSM models. The experimental data was well fitted into pseudo-first-order and pseudo-second-order kinetics with more accuracy. Thermodynamic parameters, namely enthalpy, entropy, Gibbs' free energy, and activation energy, were also evaluated to suggest the nature of the degradation process. The increase of temperature was analyzed to be more suitable for the fast removal of AO7 over TNPs. Graphical abstract.
    Matched MeSH terms: Neural Networks (Computer)*
  10. Mohamed NA, Zulkifley MA, Ibrahim AA, Aouache M
    Sensors (Basel), 2021 Sep 28;21(19).
    PMID: 34640803 DOI: 10.3390/s21196485
    In recent years, there has been an immense amount of research into fall event detection. Generally, a fall event is defined as a situation in which a person unintentionally drops down onto a lower surface. It is crucial to detect the occurrence of fall events as early as possible so that any severe fall consequences can be minimized. Nonetheless, a fall event is a sporadic incidence that occurs seldomly that is falsely detected due to a wide range of fall conditions and situations. Therefore, an automated fall frame detection system, which is referred to as the SmartConvFall is proposed to detect the exact fall frame in a video sequence. It is crucial to know the exact fall frame as it dictates the response time of the system to administer an early treatment to reduce the fall's negative consequences and related injuries. Henceforth, searching for the optimal training configurations is imperative to ensure the main goal of the SmartConvFall is achieved. The proposed SmartConvFall consists of two parts, which are object tracking and instantaneous fall frame detection modules that rely on deep learning representations. The first stage will track the object of interest using a fully convolutional neural network (CNN) tracker. Various training configurations such as optimizer, learning rate, mini-batch size, number of training samples, and region of interest are individually evaluated to determine the best configuration to produce the best tracker model. Meanwhile, the second module goal is to determine the exact instantaneous fall frame by modeling the continuous object trajectories using the Long Short-Term Memory (LSTM) network. Similarly, the LSTM model will undergo various training configurations that cover different types of features selection and the number of stacked layers. The exact instantaneous fall frame is determined using an assumption that a large movement difference with respect to the ground level along the vertical axis can be observed if a fall incident happened. The proposed SmartConvFall is a novel technique as most of the existing methods still relying on detection rather than the tracking module. The SmartConvFall outperforms the state-of-the-art trackers, namely TCNN and MDNET-N trackers, with the highest expected average overlap, robustness, and reliability metrics of 0.1619, 0.6323, and 0.7958, respectively. The SmartConvFall also managed to produce the lowest number of tracking failures with only 43 occasions. Moreover, a three-stack LSTM delivers the lowest mean error with approximately one second delay time in locating the exact instantaneous fall frame. Therefore, the proposed SmartConvFall has demonstrated its potential and suitability to be implemented for a real-time application that could help to avoid any crucial fall consequences such as death and internal bleeding if the early treatment can be administered.
    Matched MeSH terms: Neural Networks (Computer)*
  11. Cheng C, Aruchunan E, Noor Aziz MH
    Sci Rep, 2025 Jan 15;15(1):2043.
    PMID: 39814760 DOI: 10.1038/s41598-025-85440-1
    A dynamics informed neural networks (DINNs) incorporating the susceptible-exposed-infectious-recovered-vaccinated (SEIRV) model was developed to enhance the understanding of the temporal evolution dynamics of infectious diseases. This work integrates differential equations with deep neural networks to predict time-varying parameters in the SEIRV model. Experimental results based on reported data from China between January 1, and December 1, 2022, demonstrate that the proposed dynamics informed neural networks (DINNs) method can accurately learn the dynamics and predict future states. Our proposed hybrid SEIRV-DNNs model can also be applied to other infectious diseases such as influenza and dengue, with some modifications to the compartments and parameters in the model to accommodate the related control measures. This approach will facilitate improving predictive modeling and optimizing public health intervention strategies.
    Matched MeSH terms: Neural Networks (Computer)*
  12. Abdollahi A, Pradhan B
    Sensors (Basel), 2021 Jul 11;21(14).
    PMID: 34300478 DOI: 10.3390/s21144738
    Urban vegetation mapping is critical in many applications, i.e., preserving biodiversity, maintaining ecological balance, and minimizing the urban heat island effect. It is still challenging to extract accurate vegetation covers from aerial imagery using traditional classification approaches, because urban vegetation categories have complex spatial structures and similar spectral properties. Deep neural networks (DNNs) have shown a significant improvement in remote sensing image classification outcomes during the last few years. These methods are promising in this domain, yet unreliable for various reasons, such as the use of irrelevant descriptor features in the building of the models and lack of quality in the labeled image. Explainable AI (XAI) can help us gain insight into these limits and, as a result, adjust the training dataset and model as needed. Thus, in this work, we explain how an explanation model called Shapley additive explanations (SHAP) can be utilized for interpreting the output of the DNN model that is designed for classifying vegetation covers. We want to not only produce high-quality vegetation maps, but also rank the input parameters and select appropriate features for classification. Therefore, we test our method on vegetation mapping from aerial imagery based on spectral and textural features. Texture features can help overcome the limitations of poor spectral resolution in aerial imagery for vegetation mapping. The model was capable of obtaining an overall accuracy (OA) of 94.44% for vegetation cover mapping. The conclusions derived from SHAP plots demonstrate the high contribution of features, such as Hue, Brightness, GLCM_Dissimilarity, GLCM_Homogeneity, and GLCM_Mean to the output of the proposed model for vegetation mapping. Therefore, the study indicates that existing vegetation mapping strategies based only on spectral characteristics are insufficient to appropriately classify vegetation covers.
    Matched MeSH terms: Neural Networks (Computer)*
  13. Li Q, Kamaruddin N, Yuhaniz SS, Al-Jaifi HAA
    Sci Rep, 2024 Jan 03;14(1):422.
    PMID: 38172568 DOI: 10.1038/s41598-023-50783-0
    This study introduces an augmented Long-Short Term Memory (LSTM) neural network architecture, integrating Symbolic Genetic Programming (SGP), with the objective of forecasting cross-sectional price returns across a comprehensive dataset comprising 4500 listed stocks in the Chinese market over the period from 2014 to 2022. Using the S&P Alpha Pool Dataset for China as basic input, this architecture incorporates data augmentation and feature extraction techniques. The result of this study demonstrates significant improvements in Rank Information coefficient (Rank IC) and IC information ratio (ICIR) by 1128% and 5360% respectively when it is applied to fundamental indicators. For technical indicators, the hybrid model achieves a 206% increase in Rank IC and an impressive surge of 2752% in ICIR. Furthermore, the proposed hybrid SGP-LSTM model outperforms major Chinese stock indexes, generating average annualized excess returns of 31.00%, 24.48%, and 16.38% compared to the CSI 300 index, CSI 500 index, and the average portfolio, respectively. These findings highlight the effectiveness of SGP-LSTM model in improving the accuracy of cross-sectional stock return predictions and provide valuable insights for fund managers, traders, and financial analysts.
    Matched MeSH terms: Neural Networks (Computer)*
  14. Ba Wazir AS, Karim HA, Abdullah MHL, AlDahoul N, Mansor S, Fauzi MFA, et al.
    Sensors (Basel), 2021 Jan 21;21(3).
    PMID: 33494254 DOI: 10.3390/s21030710
    Given the excessive foul language identified in audio and video files and the detrimental consequences to an individual's character and behaviour, content censorship is crucial to filter profanities from young viewers with higher exposure to uncensored content. Although manual detection and censorship were implemented, the methods proved tedious. Inevitably, misidentifications involving foul language owing to human weariness and the low performance in human visual systems concerning long screening time occurred. As such, this paper proposed an intelligent system for foul language censorship through a mechanized and strong detection method using advanced deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) through Long Short-Term Memory (LSTM) cells. Data on foul language were collected, annotated, augmented, and analysed for the development and evaluation of both CNN and RNN configurations. Hence, the results indicated the feasibility of the suggested systems by reporting a high volume of curse word identifications with only 2.53% to 5.92% of False Negative Rate (FNR). The proposed system outperformed state-of-the-art pre-trained neural networks on the novel foul language dataset and proved to reduce the computational cost with minimal trainable parameters.
    Matched MeSH terms: Neural Networks (Computer)*
  15. Chui KT, Gupta BB, Liu RW, Zhang X, Vasant P, Thomas JJ
    Sensors (Basel), 2021 Sep 25;21(19).
    PMID: 34640732 DOI: 10.3390/s21196412
    Road traffic accidents have been listed in the top 10 global causes of death for many decades. Traditional measures such as education and legislation have contributed to limited improvements in terms of reducing accidents due to people driving in undesirable statuses, such as when suffering from stress or drowsiness. Attention is drawn to predicting drivers' future status so that precautions can be taken in advance as effective preventative measures. Common prediction algorithms include recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGA-III-optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves the overall accuracy by 11.2-13.6% and 10.2-12.2% in driver stress prediction and driver drowsiness prediction, respectively. Likewise, it improves the overall accuracy by 6.9-12.7% and 6.9-8.9%, respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by taking some key factors into account-namely, using a real-world driving dataset, a greater sample size, hybrid algorithms, and cross-validation. Future research directions have been suggested for further exploration and performance enhancement.
    Matched MeSH terms: Neural Networks (Computer)*
  16. Malik NUR, Sheikh UU, Abu-Bakar SAR, Channa A
    Sensors (Basel), 2023 Mar 02;23(5).
    PMID: 36904953 DOI: 10.3390/s23052745
    Human action recognition (HAR) is one of the most active research topics in the field of computer vision. Even though this area is well-researched, HAR algorithms such as 3D Convolution Neural Networks (CNN), Two-stream Networks, and CNN-LSTM (Long Short-Term Memory) suffer from highly complex models. These algorithms involve a huge number of weights adjustments during the training phase, and as a consequence, require high-end configuration machines for real-time HAR applications. Therefore, this paper presents an extraneous frame scrapping technique that employs 2D skeleton features with a Fine-KNN classifier-based HAR system to overcome the dimensionality problems.To illustrate the efficacy of our proposed method, two contemporary datasets i.e., Multi-Camera Action Dataset (MCAD) and INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset was used in experiment. We used the OpenPose technique to extract the 2D information, The proposed method was compared with CNN-LSTM, and other State of the art methods. Results obtained confirm the potential of our technique. The proposed OpenPose-FineKNN with Extraneous Frame Scrapping Technique achieved an accuracy of 89.75% on MCAD dataset and 90.97% on IXMAS dataset better than existing technique.
    Matched MeSH terms: Neural Networks (Computer)*
  17. Hassan MK, Syed Ariffin SH, Ghazali NE, Hamad M, Hamdan M, Hamdi M, et al.
    Sensors (Basel), 2022 May 09;22(9).
    PMID: 35591282 DOI: 10.3390/s22093592
    Recently, there has been an increasing need for new applications and services such as big data, blockchains, vehicle-to-everything (V2X), the Internet of things, 5G, and beyond. Therefore, to maintain quality of service (QoS), accurate network resource planning and forecasting are essential steps for resource allocation. This study proposes a reliable hybrid dynamic bandwidth slice forecasting framework that combines the long short-term memory (LSTM) neural network and local smoothing methods to improve the network forecasting model. Moreover, the proposed framework can dynamically react to all the changes occurring in the data series. Backbone traffic was used to validate the proposed method. As a result, the forecasting accuracy improved significantly with the proposed framework and with minimal data loss from the smoothing process. The results showed that the hybrid moving average LSTM (MLSTM) achieved the most remarkable improvement in the training and testing forecasts, with 28% and 24% for long-term evolution (LTE) time series and with 35% and 32% for the multiprotocol label switching (MPLS) time series, respectively, while robust locally weighted scatter plot smoothing and LSTM (RLWLSTM) achieved the most significant improvement for upstream traffic with 45%; moreover, the dynamic learning framework achieved improvement percentages that can reach up to 100%.
    Matched MeSH terms: Neural Networks (Computer)*
  18. Raja Sekaran S, Pang YH, Ling GF, Yin OS
    F1000Res, 2021;10:1261.
    PMID: 36896393 DOI: 10.12688/f1000research.73175.1
    Background: In recent years, human activity recognition (HAR) has been an active research topic due to its widespread application in various fields such as healthcare, sports, patient monitoring, etc. HAR approaches can be categorised as handcrafted feature methods (HCF) and deep learning methods (DL). HCF involves complex data pre-processing and manual feature extraction in which the models may be exposed to high bias and crucial implicit pattern loss. Hence, DL approaches are introduced due to their exceptional recognition performance. Convolutional Neural Network (CNN) extracts spatial features while preserving localisation. However, it hardly captures temporal features. Recurrent Neural Network (RNN) learns temporal features, but it is susceptible to gradient vanishing and suffers from short-term memory problems. Unlike RNN, Long-Short Term Memory network has a relatively longer-term dependency. However, it consumes higher computation and memory because it computes and stores partial results at each level. Methods: This work proposes a novel multiscale temporal convolutional network (MSTCN) based on the Inception model with a temporal convolutional architecture. Unlike HCF methods, MSTCN requires minimal pre-processing and no manual feature engineering. Further, multiple separable convolutions with different-sized kernels are used in MSTCN for multiscale feature extraction. Dilations are applied to each separable convolution to enlarge the receptive fields without increasing the model parameters. Moreover, residual connections are utilised to prevent information loss and gradient vanishing. These features enable MSTCN to possess a longer effective history while maintaining a relatively low in-network computation. Results: The performance of MSTCN is evaluated on UCI and WISDM datasets using subject independent protocol with no overlapping subjects between the training and testing sets. MSTCN achieves F1 scores of 0.9752 on UCI and 0.9470 on WISDM. Conclusion: The proposed MSTCN dominates the other state-of-the-art methods by acquiring high recognition accuracies without requiring any manual feature engineering.
    Matched MeSH terms: Neural Networks (Computer)*
  19. Kansal I, Khullar V, Sharma P, Singh S, Hamid JA, Santhosh AJ
    Sci Rep, 2025 Feb 12;15(1):5157.
    PMID: 39934192 DOI: 10.1038/s41598-024-84922-y
    Early detection of ocular diseases is vital to preventing severe complications, yet it remains challenging due to the need for skilled specialists, complex imaging processes, and limited resources. Automated solutions are essential to enhance diagnostic precision and support clinical workflows. This study presents a deep learning-based system for automated classification of ocular diseases using the Ocular Disease Intelligent Recognition (ODIR) dataset. The dataset includes 5,000 patient fundus images labeled into eight categories of ocular diseases. Initial experiments utilized transfer learning models such as DenseNet201, EfficientNetB3, and InceptionResNetV2. To optimize computational efficiency, a novel two-level feature selection framework combining Linear Discriminant Analysis (LDA) and advanced neural network classifiers-Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM)-was introduced. Among the tested approaches, the "Combined Data" strategy utilizing features from all three models achieved the best results, with the BiLSTM classifier attaining 100% accuracy, precision, and recall on the training set, and over 98% performance on the validation set. The LDA-based framework significantly reduced computational complexity while enhancing classification accuracy. The proposed system demonstrates a scalable, efficient solution for ocular disease detection, offering robust support for clinical decision-making. By bridging the gap between clinical demands and technological capabilities, it has the potential to alleviate the workload of ophthalmologists, particularly in resource-constrained settings, and improve patient outcomes globally.
    Matched MeSH terms: Neural Networks (Computer)*
  20. Ali GA, Abubakar H, Alzaeemi SAS, Almawgani AHM, Sulaiman A, Tay KG
    PLoS One, 2023;18(9):e0286874.
    PMID: 37747876 DOI: 10.1371/journal.pone.0286874
    This study proposes a novel hybrid computational approach that integrates the artificial dragonfly algorithm (ADA) with the Hopfield neural network (HNN) to achieve an optimal representation of the Exact Boolean kSatisfiability (EBkSAT) logical rule. The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EBkSAT logic representation. To assess the performance of the proposed hybrid computational model, a specific Exact Boolean kSatisfiability problem is constructed, and simulated data sets are generated. The evaluation metrics employed include the global minimum ratio (GmR), root mean square error (RMSE), mean absolute percentage error (MAPE), and network computational time (CT) for EBkSAT representation. Comparative analyses are conducted between the results obtained from the proposed model and existing models in the literature. The findings demonstrate that the proposed hybrid model, ADA-HNN-EBkSAT, surpasses existing models in terms of accuracy and computational time. This suggests that the ADA algorithm exhibits effective compatibility with the HNN for achieving an optimal representation of the EBkSAT logical rule. These outcomes carry significant implications for addressing intricate optimization problems across diverse domains, including computer science, engineering, and business.
    Matched MeSH terms: Neural Networks (Computer)*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links