Displaying publications 21 - 40 of 1113 in total

Abstract:
Sort:
  1. Strout G, Russell SD, Pulsifer DP, Erten S, Lakhtakia A, Lee DW
    Ann Bot, 2013 Oct;112(6):1141-8.
    PMID: 23960046 DOI: 10.1093/aob/mct172
    BACKGROUND AND AIMS: Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration.

    METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.

    KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.

    Matched MeSH terms: Plant Leaves/metabolism; Plant Leaves/ultrastructure; Plant Leaves/chemistry
  2. Kirubakari B, Chen Y, Sasidharan S
    PMID: 31113347 DOI: 10.2174/1871523018666190522112902
    BACKGROUND: Polyalthia longifolia is a popular medicinal plant and has been widely used as a traditional remedy for centuries in curing of various ailments. The purpose of this study was conducted to determine the in situ antimicrobial synergistic effects between Polyalthia longifolia leaf ethyl acetate fraction (PLEAF) and ampicillin against MRSA local isolate by using modern microscopy technique.

    METHODS: Hence, the evaluation of the synergistic activity of PLEAF and ampicillin against MRSA local isolate was conducted with scanning electron microscopy (SEM).

    RESULTS: The combinational effect of PLEAF fraction and ampicillin exhibited significant antibacterial activity against MRSA. Bacterial cells observations showed invagination, impaired cell division, extensive wrinkles, cell shrinkage, the appearance of a rougher cell with fibrous matrix and clustered cells which confirmed the synergistic effect of PLEAF and ampicillin against MRSA local isolate by SEM.

    CONCLUSION: Conclusively, the in situ SEM observation proved the synergistic antimicrobial activity between PLEAF fraction and ampicillin to destroy the MRSA resistance bacteria which is an important aspect of PLEAF fraction to be used in the future combinational therapy.

    Matched MeSH terms: Plant Leaves
  3. Abubakari F, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, van der Ent A
    AoB Plants, 2020 Dec;12(6):plaa058.
    PMID: 33408845 DOI: 10.1093/aobpla/plaa058
    The Malaysian state of Sabah on the Island of Borneo has recently emerged as a global hotspot of nickel hyperaccumulator plants. This study focuses on the tissue-level distribution of nickel and other physiologically relevant elements in hyperaccumulator plants with distinct phylogenetical affinities. The roots, old stems, young stems and leaves of Flacourtia kinabaluensis (Salicaceae), Actephila alanbakeri (Phyllanthaceae), Psychotria sarmentosa (Rubiaceae) and young stems and leaves of Glochidion brunneum (Phyllanthaceae) were studied using nuclear microprobe (micro-PIXE and micro-BS) analysis. The tissue-level distribution of nickel found in these species has the same overall pattern as in most other hyperaccumulator plants studied previously, with substantial enrichment in the epidermal cells and in the phloem. This study also revealed enrichment of potassium in the spongy and palisade mesophyll of the studied species. Calcium, chlorine, manganese and cobalt were found to be enriched in the phloem and also concentrated in the epidermis and cortex of the studied species. Although hyperaccumulation ostensibly evolved numerous times independently, the basic mechanisms inferred from tissue elemental localization are convergent in these tropical woody species from Borneo Island.
    Matched MeSH terms: Plant Leaves
  4. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R, Ya'akob H
    Apoptosis, 2018 01;23(1):27-40.
    PMID: 29204721 DOI: 10.1007/s10495-017-1434-7
    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
    Matched MeSH terms: Plant Leaves/chemistry
  5. Hew CS, Gam LH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1577-86.
    PMID: 21938418 DOI: 10.1007/s12010-011-9377-x
    Gynura procumbens (Lour.) Merr. is a traditionally used medicinal plant to decrease cholesterol level, reduce high blood pressure, control diabetics, and for treatment of cancer. In our present study, a proteomic approach was applied to study the proteome of the plant that had never analyzed before. We have identified 92 abundantly expressed proteins from the leaves of G. procumbens (Lour.) Merr. Amongst the identified proteins was miraculin, a taste-masking agent with high commercial value. Miraculin made up ∼0.1% of the total protein extracted; the finding of miraculin gave a great commercial value to G. procumbens (Lour.) Merr. as miraculin's natural source is limited while the production of recombinant miraculin faced challenges of not being able to exhibit the taste-masking effect as in the natural miraculin. We believe the discovery of miraculin in G. procumbens (Lour.) Merr., provides commercial feasibility of miraculin in view of the availability of G. procumbens (Lour.) Merr. that grow wildly and easily in tropical climate.
    Matched MeSH terms: Plant Leaves/genetics; Plant Leaves/metabolism; Plant Leaves/chemistry
  6. Mahdavi F, Sariah M, Maziah M
    Appl Biochem Biotechnol, 2012 Feb;166(4):1008-19.
    PMID: 22183565 DOI: 10.1007/s12010-011-9489-3
    The possibility of controlling Fusarium wilt--caused by Fusarium oxysporum sp. cubensec (race 4)--was investigated by genetic engineering of banana plants for constitutive expression of rice thaumatin-like protein (tlp) gene. Transgene was introduced to cauliflower-like bodies' cluster, induced from meristemic parts of male inflorescences, using particle bombardment with plasmid carrying a rice tlp gene driving by the CaMV 35S promoter. Hygromycin B was used as the selection reagent. The presence and integration of rice tlp gene in genomic DNA confirmed by PCR and Southern blot analyses. RT-PCR revealed the expression of transgene in leaf and root tissues in transformants. Bioassay of transgenic banana plants challenged with Fusarium wilt pathogen showed that expression of TLP enhanced resistance to F. oxysporum sp. cubensec (race 4) compared to control plants.
    Matched MeSH terms: Plant Leaves/genetics*; Plant Leaves/immunology; Plant Leaves/microbiology
  7. Onoja E, Wahab RA
    Appl Biochem Biotechnol, 2020 Oct;192(2):585-599.
    PMID: 32495234 DOI: 10.1007/s12010-020-03348-0
    Strategies to immobilize the individual enzymes are crucial for enhancing catalytic applicability and require a controlled immobilization process. Herein, protocol for immobilizing Candida rugosa lipase (CRL) onto modified magnetic silica derived from oil palm leaves ash (OPLA) was optimized for the effects of concentration of CRL, immobilization time, and temperature, monitored by titrimetric and spectrometric methods. XRD and TGA-DTG spectrometric observations indicated that OPLA-silica was well coated over magnetite (SiO2-MNPs) and CRLs were uniformly bound by covalent bonds to SiO2-MNPs (CRL/Gl-A-SiO2-MNPs). The optimized immobilization protocol showed that in the preparation of CRL/Gl-A-SiO2-MNPs, CRL with 68.3 mg/g protein loading and 74.6 U/g specific activity was achieved using 5 mg/mL of CRL, with an immobilization time of 12 h at 25 °C. The present work also demonstrated that acid-pretreated OPLA is a potential source of renewable silica, envisioning its applicability for practical use in enzymatic catalysis on solid support.
    Matched MeSH terms: Plant Leaves/chemistry*
  8. Mohammad Noor HS, Ismail NH, Kasim N, Mediani A, Mohd Zohdi R, Ali AM, et al.
    Appl Biochem Biotechnol, 2020 Sep;192(1):1-21.
    PMID: 32215848 DOI: 10.1007/s12010-020-03304-y
    Patients are turning into herbs for the management of diabetes, which cause increasing in the demand of plant-based alternative medicines. Ficus deltoidea or locally known as "Mas Cotek" in Malaysia is a famous herbal plant. However, many varieties of F. deltoidea existed with varied antidiabetic activities inspire us to evaluate in vivo antidiabetic activity of the most available varieties of F. deltoidea. Therefore, antihyperglycemic effect of different varieties of F. deltoidea at dose 250 mg/kg was evaluated on streptozotocin-nicotinamide-induced diabetic rats and further assessed their urinary metabolites using proton nuclear magnetic resonance (1H-NMR). The hyperglycemic blood level improved towards normoglycemic state after 30 days of treatment with standardized extracts of F. deltoidea var. trengganuensis, var. kunstleri, and var. intermedia. The extracts also significantly managed the biochemical parameters in diabetic rats. Metabolomics results showed these varieties were able to manage the altered metabolites of diabetic rats by shifting some of the metabolites back to their normal state. This knowledge might be very important in suggesting the use of these herbs in long-term treatment for diabetes. The most potential variety can be recommended, which may be useful for further pharmacological studies and herbal authentication processes.
    Matched MeSH terms: Plant Leaves/chemistry
  9. Abdul Ghani ZDF, Ab Rashid AH, Shaari K, Chik Z
    Appl Biochem Biotechnol, 2019 Oct;189(2):690-708.
    PMID: 31111377 DOI: 10.1007/s12010-019-03042-w
    The present studies are to evaluate the ability of PB to induce weight loss and urine metabolite profile of Piper betle L. (PB) leaf extracts using metabolomics approach. Dried PB leaves were extracted with ethanol 70% and the studies were performed in different groups of rats fed with high fat (HFD) and normal diet (ND). Then, fed with the PB extract with 100, 300, and 500 mg/kg and two negative control groups given water (WTR). The body weights were monitored and evaluated. Urine was collected and 1H NMR-based metabolomics approach was used to detect the metabolite changes. Results showed that PB-treated group demonstrated inhibition of body weight gain. The trajectory of urine metabolites showed that PB-treated group gave the different distribution from week 12 to 16 compared with the control groups. In 1H NMR metabolomic approach analysis, the urine metabolites gave the best separation in principle component 1 and 3, with 40.0% and 9.56% of the total variation. Shared and unique structures (SUS) plot model showed that higher concentration PB-treated group was characterized by high level of indole-3-acetate, aspartate, methanol, histidine, and creatine, thus caused an increased the metabolic function and maintaining the body weight of the animals treated.
    Matched MeSH terms: Plant Leaves/chemistry*
  10. R R
    Appl Biochem Biotechnol, 2022 Jan;194(1):176-186.
    PMID: 34762268 DOI: 10.1007/s12010-021-03742-2
    Hellenia speciosa (J.Koenig) S.R. Dutta is a plant species belonging to the family Costaceae. It is widely distributed in China, India, Malaysia, Indonesia, tropical, and subtropical Asia. In Ayurveda, the rhizome of this plant has been extensively used to treat fever, rash, asthma, bronchitis, and intestinal worms. The objective of the present study was to investigate the phytochemical constituents of the leaf of Hellenia speciosa using gas chromatography and mass spectroscopy analysis (GC-MS). The GC-MS analysis revealed the presence of 17 phytochemical components in the ethanolic leaf extract of Hellenia speciosa. The prevailing bioactive compounds present in Hellenia speciosa were thymol (RT-10.019; 3.59%), caryophyllene (RT-11.854; 0.62%), caryophyllene oxide (RT-13.919; 1.34%), artumerone (RT-14.795; 1.35%), hexadecanoic acid methyl ester (RT-17.536; 2.77%), 9,12-octadecanoic acid methyl ester (RT-19.163; 1.35%), squalene (RT-24.980; 1.19%), piperine (RT-25.745; 3.11%), beta tocopherol (RT-26.681; 2.88%), vitamin E (RT-27.290; 2.64%), progesterone (RT-29.608; 3.18%), caparratriene (RT-29.861; 9.72%), and testosterone (RT-30.73; 5.81%). The compounds were identified by comparing their retention time and peak area with that of the literature and by interpretation of mass spectra. The results and findings of the present study suggest that the plant leaf can be used as a valuable source in the field of herbal drug discovery. The presence of bioactive compounds justifies the use of plant leaves for treating various diseases with fewer side effects and recommended the plant of pharmaceutical importance. However, further studies are needed to undertake its bioactivity and toxicity profile.
    Matched MeSH terms: Plant Leaves/chemistry*
  11. Luthfi AAI, Manaf SFA, Illias RM, Harun S, Mohammad AW, Jahim JM
    Appl Microbiol Biotechnol, 2017 Apr;101(8):3055-3075.
    PMID: 28280869 DOI: 10.1007/s00253-017-8210-z
    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
    Matched MeSH terms: Plant Leaves/metabolism*; Plant Leaves/chemistry
  12. Siti HN, Kamisah Y, Mohamed S, Jaarin K
    Appl Physiol Nutr Metab, 2019 04;44(4):373-380.
    PMID: 30216735 DOI: 10.1139/apnm-2018-0175
    The prolonged intake of diet containing repeatedly heated vegetable oil can cause hypertension in the long run.
    In this study, the effects of citrus leaf extract (CLE) supplementation on vascular reactivity, plasma nitrite, and aortic structure in hypertensive rats were investigated by the consumption of repeatedly heated vegetable oil [corrected]. Male Sprague Dawley rats (n = 56) were divided into 7 groups corresponding to the respective diets. For 16 weeks, 1 group was given standard rat chow (control) while other groups were given diets containing 15% w/w of palm oil, fresh palm oil (FPO), palm oil heated 5 times (5HPO), and palm oil heated 10 times (10HPO), with or without the incorporation of 0.15% w/w CLE (FPO+CLE, 5HPO+CLE, or 10HPO+CLE). Plasma nitrite levels were measured before and at 16 weeks of treatment. After 16 weeks, the rats were sacrificed and aortae were harvested for measuring vascular reactivity and for microscopic study. CLE supplementation had significantly reduced the loss of plasma nitrite and attenuated the vasoconstriction response to phenylephrine in the 5HPO group but not in the 10HPO group. However, CLE had no significant effect on the vasorelaxation response to acetylcholine and sodium nitroprusside. The elastic lamellae of tunica media in 5HPO, 10HPO, and 10HPO+CLE groups appeared disorganised and disrupted. Obtained findings suggested that CLE was able to enhance nitric oxide bioavailability that might dampen the vasoconstriction effect of phenylephrine.
    Matched MeSH terms: Plant Leaves/chemistry*
  13. Abugassa I, Sarmani SB, Samat SB
    Appl Radiat Isot, 1999 Jun;50(6):989-94.
    PMID: 10355102
    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for.
    Matched MeSH terms: Plant Leaves
  14. Khawory MH, Amat Sain A, Rosli MAA, Ishak MS, Noordin MI, Wahab HA
    Appl Radiat Isot, 2020 Mar;157:109013.
    PMID: 31889674 DOI: 10.1016/j.apradiso.2019.109013
    BACKGROUND AND AIM: The aim of this study is to evaluate the effects of gamma radiation treatment on three medicinal plants, namely Euodia malayana, Gnetum gnemon and Khaya senegalensis at two different forms; methanol leaf extracts and dried leaves respectively.

    EXPERIMENTAL PROCEDURE: The microbial limit test (MLT) studies indicated the suitable dosage of minimum and maximum gamma irradiation for leaf extracts as well as dried leaves of all the tested medicinal plants. Quantitative analysis of total phenolic content (TPC) analysis is based on calorimetric measurements determined using the Folin-Ciocalteu reagent with gallic acid (GA) used as the reference. In vitro cytotoxicity assay by using fibroblast (L929) cell lines was performed on each plant to determine the toxicity effect which sodium dodecyl sulfate (SDS) as the positive control. DPPH (2,2-diphenyl-1-picryl-hydrazyl) assay was conducted by using vitamin C and GA as the positive controls to determine the antioxidant property of each plant.

    RESULTS AND CONCLUSION: The MLT analysis indicated that the suitable dosage gamma irradiation for leaf extracts was 6-12 kGy and dried leaves were 9-13 kGy. The amount of GA concentration in each plant increased significantly from 30-51 mg GAE g-1 before treatment to 57-103 mg GAE g-1 after treatment with gamma radiation. This showed no significant effect of in vitro cytotoxicity activity before and after treatment with gamma irradiation in this study. Effective concentration (EC50) values of Khaya senegalensis plant reduced significantly (P ≤ 0.005) from 44.510 μg/ml before treatment to 24.691 μg/ml after treatment with gamma radiation, which indicate an increase of free radical scavenging activity.

    Matched MeSH terms: Plant Leaves/metabolism
  15. Kelvin Yong Pui Szi, Wan Afiqah Syahirah Wan Ghazali, Siti Fadilah Abdullah, Norzaliana Zawawi, Thirumulu Ponnuraj Kannan
    MyJurnal
    Clinacanthus nutans (C. nutans), a well-known ethnopharmacological plant consumed for its medicinal purposes by Southeast Asian communities. C. nutans is said to possess antipyretic, inflammatory, antiedemic as well as analgesic properties and used traditionally in treating various skin ailments, Herpes infection, cancer and diabetes. The young leaves of this C. nutans are consumed in Malaysia for maintaining health. In this study, the proliferative activity of human gingival fibroblast cells (HGF-1, ATCC®CRL-2014™, USA) treated with the ethanol extract obtained from C. nutans leaves at three different concentrations (250, 125 and 62.5 µg/ml) was compared with the untreated cells using alamarBlue assay. The proliferative activity of HGF-1 using alamarBlue assay showed that the cells treated with 62.5 μg/ml of ethanolic extract of C. nutans leaves exhibited increased proliferation compared to the other groups and hence does not exhibit any cytotoxicity on HGF-1.
    Matched MeSH terms: Plant Leaves
  16. Oh MJ, Hamid MA, Ngadiran S, Seo YK, Sarmidi MR, Park CS
    Arch. Dermatol. Res., 2011 Apr;303(3):161-70.
    PMID: 20981431 DOI: 10.1007/s00403-010-1089-5
    Ficus deltoidea (Mas cotek) water extract has been widely used for woman health in Malaysia. Our investigation focused to identify anti-melanogenic efficacy of F. deltoidea since it has been known to have strong anti-oxidant activities. Anti-melanogenic effect of F. deltoidea extract was analyzed using cultured B16F1 melanoma cells. Cytotoxicity of the extract was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and determined the highest concentration of the extract that did not affect cell viability as 0.1% (w/v). α-MSH-induced melanin synthesis was significantly inhibited with dose-dependent manner by treatment of F. deltoidea leave extract, which was comparable to that of kojic acid. The extract directly inhibited mushroom tyrosinase activity and intracellular tyrosinase activity of B16F1 as well. The inhibition of intracellular tyrosinase activity was found to be exerted at the protein expression level when analyzed by immunoblot and tyrosinase zymography. The expression of microphthalmia-associated transcription factor (MITF) was also reduced by the F. deltoidea extract. In conclusion, F. deltoidea extract has strong anti-melanogenic activity that is exerted by direct inhibition of tyrosinase enzyme activity and by down-regulation of the expression of genes involved in the melanogenesis pathways. Collectively, data shown in this study strongly suggest that F. deltoidea extract has potential to be used as a novel depigmenting agent for cosmetics.
    Matched MeSH terms: Plant Leaves
  17. Chou LY, Clarke CM, Dykes GA
    Arch Microbiol, 2014 Oct;196(10):709-17.
    PMID: 25005571 DOI: 10.1007/s00203-014-1011-1
    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.
    Matched MeSH terms: Plant Leaves/microbiology*
  18. Salleh WM, Ahmad F, Yen KH
    Arch Pharm Res, 2015 Apr;38(4):485-93.
    PMID: 25098422 DOI: 10.1007/s12272-014-0460-z
    The present study aimed to examine the chemical compositions of the essential oils of Beilschmiedia madang and their antioxidant, antibacterial, antifungal, anticholinesterase and anti-tyrosinase activities. The major constituents of the essential oils of leaf and bark of B. madang were δ-cadinene (17.0 and 20.5 %), β-caryophyllene (10.3 and 6.7 %), α-cubebene (11.3 and 15.6 %), and α-cadinol (5.8 and 10.6 %). The essential oils were screened for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, β-carotene/linoleic acid bleaching, and total phenolic content. The bark oil showed the highest β-carotene/linoleic acid bleaching (90.3 % ± 0.2) and DPPH radical scavenging (IC50 212.0 µg/mL), while the highest phenolic content was exhibited by the leaf oil (94.5 % ± 0.3 mg GA/g). The antibacterial and antifungal activities were investigated by the disc diffusion and micro dilution method. The leaf and bark oils showed moderate activity towards Bacillus subtilis and Staphylococcus aureus with minimum inhibitory concentration (MIC) value 125 µg/mL. For antifungal assay, the bark oil showed strong activity towards Aspergillus niger and Aspergillus fumigatus with MIC value 62.5 µg/mL. Anticholinesterase and anti-tyrosinase activities were evaluated against Ellman method and mushroom tyrosinase, respectively. The results showed that leaf oil gave significant percentage inhibition (I%: acetylcholinesterase 55.2 %, butyrylcholinesterase 60.4 %, tyrosinase 53.1 %).
    Matched MeSH terms: Plant Leaves
  19. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1173-1180.
    PMID: 30942109 DOI: 10.1080/21691401.2018.1549064
    Cervical cancer is the third most common highest mortality in women worldwide. The use of standard chemotherapeutic drugs against cervical cancer patients received several side effects. Therefore, we focused phytoconsituents-mediated synthesis of gold nanoparticles (AuNPs) considered as greatest attention in the treatment of cervical cancer. In this present study, we reported that green synthesis of AuNPs by using with Alternanthera Sessilis aqueous extract. Synthesis of AuNPs were characterized by UV visible spectroscopy, energy dispersive X-ray (EDX), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and atomic force microscope. Synthesized AuNPs confirmed by the UV absorption maximum at 535 and crystal structure of gold AuNPs was further confirmed by EDX and SAED. TEM and atomic force microscopy images show the size and morphological distribution of nanoparticles. FTIR analysis was confirmed the hydroxyl groups, amine and alkaline groups of biomolecules are present in the AuNPs. Moreover, AuNPs induce cytotoxicity in cervical cancer cells and also induce apoptosis through modulating intrinsic apoptotic mechanisms in cervical cancer cells. This green synthesis of AuNPs from Alternanthera sessilis approach was easy, large scaled up and eco-friendly.
    Matched MeSH terms: Plant Leaves/chemistry*
  20. Zhang X, Tan Z, Jia K, Zhang W, Dang M
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):2171-2178.
    PMID: 31159596 DOI: 10.1080/21691401.2019.1620249
    Nanomedicine is a rapidly emerging field and is reported to be a promising tool for treating various diseases. Green synthesized nanoparticles are documented to possess a potent anticancer effect. Rabdosia rubescens is a Chinese plant which is also one of the components of PC-SPES and used to treat prostate cancer. In the present study, we synthesized the gold nanoparticles from R. rubescens (RR-AuNP) and analyzed its anticancer activity against the lung carcinoma A549 cell lines. Since lung cancer is reported to be with increased morbidity and decreased survival rate. The biosynthesized RR-AuNP were confirmed using UV-Visible spectrophotometer, size and shape of RR-AuNP were assessed by DLS, TEM and EDX. The biomolecules present in RR-AuNP and its topographical structure were detected using FTIR, SAED and AFM analysis. MTT assay was performed to detect the IC50 dose of RR-AuNP and its apoptotic effect was assessed by detecting the caspases activation, ROS generation. The anticancer effect of RR-AuNP was confirmed by DAPI staining, TUNEL assay and its molecular mechanism were confirmed by assessing the apoptotic signalling molecules protein expression. Our results illustrate that RR-AuNP showed a strong absorption peak at 550 nm and the RRAuNP were polydispersed nanospheres with size of 130 nm. RR-AuNP IC50 dose against A549 lung carcinoma cell line was detected to be at 25 µg/ml. The results of DAPI staining, TUNEL and immunoblotting analysis confirms both the 25 µg/ml and 50 µg/ml of RR-AuNP possess potent anticancer and apoptotic effect, suggesting that RR-AuNP that it may be a persuasive molecule to treat lung cancer.
    Matched MeSH terms: Plant Leaves/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links