RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.
CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.
METHODS: Using CRISPR/Cas9 gene editing two chimeric P. falciparum parasites, were generated, where the pfcsp gene has been replaced by either one of the two major pvcsp alleles, VK210 or VK247. In addition, a P. falciparum parasite line that lacks CSP expression was also generated. These parasite lines have been analysed for sporozoite production in An. stephensi mosquitoes.
RESULTS: The two chimeric Pf-PvCSP lines exhibit normal asexual and sexual blood stage development in vitro and produce sporozoite-containing oocysts in An. stephensi mosquitoes. Expression of the corresponding PvCSP was confirmed in oocyst-derived Pf-PvCSP sporozoites. However, most oocysts degenerate before sporozoite formation and sporozoites were not found in either the mosquito haemocoel or salivary glands. Unlike the chimeric Pf-PvCSP parasites, oocysts of P. falciparum parasites lacking CSP expression do not produce sporozoites.
CONCLUSIONS: Chimeric P. falciparum parasites expressing P. vivax circumsporozoite protein fail to produce salivary gland sporozoites. Combined, these studies show that while PvCSP can partially complement the function of PfCSP, species-specific features of CSP govern full sporozoite maturation and development in the two human malaria parasites.