Acute suppurative thyroiditis account for <1% of thyroid diseases and is uncommon because of the gland's encapsulation, iodine-rich environment, good vascular supply and extensive lymphatic drainage. It has been reported in patients with underlying goiters, thyroid cancers and in immuno-compromised patients. The usual causative organisms are Staphylococci spp. and Streptococci spp. Rarer organisms include Klebsiella spp. and Salmonella spp. Due to its rarity (as there have been only 28 cases of Salmonella thyroid abscess being reported in the literature till 2020), only case reports are available to guide management. We report two cases of thyroid abscess due to Salmonella enteritidis in our institution that may herald the re-emergence of this uncommon infection of the thyroid gland and to raise awareness for all clinicians. Both patients presented with neck swelling, dysphagia and sepsis. Surgical intervention was warranted in both patients due to the severity of the disease and failed medical therapy. Recovery was uneventful following adequate surgical intervention and antibiotic therapy according to the culture and sensitivity report of the pathogen. This case report highlights that both patients were immunocompromised, and they contracted Salmonella thyroid abscess without any gastrointestinal involvement. Thus, a high index of suspicion for Salmonella thyroid abscess in immunocompromised patients can expedite the diagnosis and appropriate management can be commenced such as antibiotic therapy, percutaneous aspiration and surgical drainage in the event of failed medical therapy.
Salmonella remains to be a major foodborne pathogen for animals and humans and is the
leading cause of foodborne infections and outbreaks in various countries. Salmonella Enteritidis
is one of the most frequently isolated serotypes in poultry and poultry products from human
food poisoning cases. It can cause mild to acute gastroenterititis as well as other common
food poisoning symptoms when infection takes place in human. Nucleic acid amplification
technologies such as Polymerase Chain Reaction (PCR) is a tool that is rapid and sensitive
for detection of bacterial pathogen. We report the successful detection of S. Enteritidis by
PCR in raw chicken meat artificially-contaminated with serial concentration of S. Enteritidis
using crude DNA extracts as DNA template. PCR primers, ENT-F and ENT-R targeted on sdfI
gene were used to amplify DNA region unique to S. Enteritidis with crude DNA extract of the
samples, yielded product with the size of 303 bp. These primers were specific to S. Enteritidis
when tested by in-silico simulation against genome database of targeted bacterial species and
confirmed in PCR as amplification bands were observed with S. Typhimurium, S. Polarum and
S. Gallinarum. The established PCR can detect as few as 9.4 X 101
CFU/ml of inoculated S.
Enteritidis concentration and proved that pre-enrichment effect have significant effect on PCR
detection by increasing 1000-fold of the sensitivity limit compared to the non pre-enriched
samples. The PCR technique indicated that it can be successfully coupled with pre-enrichment
step to offer advantage in routine screening and surveillance of bacterial contamination in food
samples.
Salmonella has been reported to be presence both in raw and processed foods worldwide. In this study, the prevalence, quantification and antibiotic susceptibility of Salmonella isolated from raw vegetables or locally known as ulam such as asiatic pennywort (Centella asiatica (L) Urb), water dropwort (Oenanthe javanica (Blume) DC), long bean (Vigna sinensis EndL), and winged bean (Psophocarpus tetragonolobus (L) DC) obtained from retail markets in Selangor, Malaysia were carried out. From 96 samples tested, the overall prevalence of Salmonella spp. was 97.9%, Salmonella Enteritidis was 54.2% and Salmonella Typhimurium was 82.3% respectively. Samples were contaminated with Salmonella ranging from < 3 to 2400 MPN/g. Salmonella Enteritidis and Salmonella Typhimurium isolates obtained from the raw vegetables (ulam) were found to exhibit high resistance against ampicillin (100%), erythromycin (100%), amoxicillin/clavunic acid (81.3%), cephalothin (75%), streptomycin (50%) and ciprofloxacin (50%). All Salmonella isolates showed multi drug resistant (MDR) profile with each isolate being resistant to 3 or more antibiotics. The multiple antibiotic resistance (MAR) index of Salmonella isolates ranged from 0.27 to 0.55 for Salmonella Enteritidis and 0.27 to 0.82 for Salmonella Typhimurium. The presence of Salmonella on raw vegetables (ulam) and high antibiotic resistance isolates indicated that raw vegetables could be contaminated and thus imposes possible health risk to local consumers.
Salmonellosis is an important public health problem and causes large economic losses in the poultry industry. The emergence of molecular technology has opened various possibilities for constructing tailor-made proteins, particularly protein E from bacteriophage PhiX174 for the
production of bacterial ghosts (BGs) applied in vaccines purposes. In the present study, the plamdaPRcI-Elysis plasmid carrying the PhiX174 lysis gene E and thermo-sensitive lamda PR-cl857 regulatory system was constructed. Two Salmonella Enteritidis (SE-2 and SE- 4) and one Salmonella Typhimurium (ST-4) isolates were able to uptake the lysis plasmid via electrotransformation. Generation of ghosts was enhanced by increasing the incubation temperature up to 42˚C. Cell viability of SE-2, SE-4 and ST-4 decreased ranging in log 2.7 to log 4.1 cycles after lysis induction. Moreover, SE-2 and SE-4 exhibited the earliest reduction of CFU after 3 h of incubation. Our results may provide a promising avenue for the development of Salmonella BGs vaccines.
ABSTRACT: Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain identified polyphenolic compounds that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to (i) peanut skin diet without SE inoculation (PS); (ii) peanut skin diet and SE inoculation (PSSE); (iii) control diet without SE inoculation (CON); and (iv) control diet with SE inoculation (CONSE). Feed intake and body weights were determined at weeks 0 and 5. On days 10 and 24 posthatch, three birds per pen (24 total) from each treatment group were euthanized, and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen, and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed by using a t test. Performance data were analyzed in a completely randomized design by using a general linear mixed model to evaluate differences. There were no significant differences (P > 0.05) in weekly average pen body weight, total feed consumption, bird weight gain, and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU per gram for fecal, litter, or feed between the treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤ 0.1) to have a lower Salmonella CFU per gram compared with the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.
Salmonella sp are important causes of meningitis among neonates and young children in Malaysia. We present a case of Salmonella enteritidis meningitis in a six week old female who presented with a one week history of fever, diarrhea and seizures which was unsuccessfully treated with a third generation cephalosporin. She had a relapse of meningitis complicated with ventriculitis and hydrocephalus, requiring an eleven week course of meropenem. She improved clinically, but did not have improvement in the cerebrospinal fluid (CSF) glucose level despite prolonged antibiotic use. This case illustrates the dilemma in determining the duration of antibiotic needed to successfully treat Salmonella enteritidis ventriculitis.
Essential oils obtained by hydrodistillation from the rhizomes of Etlingera pyramidosphaera (K. Schum.) R. M. Sm, E. megalocheilos (Griff.) A.D. Poulsen, comb. nov., E. coccinea (Blume) S. Sakai & Nagam, E. elatior (Jack) R. M. Sm, and E. brevilabrum (Valeton) R. M. Sm were analyzed by GCMS. The highest oil yield was obtained from E. pyramidosphaera (0.45%), followed by E. elatior (0.38%), E. coccinea (0.30%), E. brevilabrum (0.28%) and E. megalocheilos (0.25%). The major constituents of the essential oils were oxygenated monoterpenes, followed by sesquiterpenes, oxygenated sesquiterpenes, oxygenated diterpenes and diterpenes. The essential oils from E. pyramidosphaera and E. brevilabrum exhibited the best cytotoxicity against MCF 7 (LC50: 7.5 +/- 0.5 mg mL(-1)) and HL 60 (LC50: 5.0 mg mL(-1)), respectively. Strong inhibition was also observed for the essential oils of E. coccinea and E. megalocheilos against Staphylococcus aureus (MIC: 8.0 +/- 0.5 mg mL(-1), and 5.0 +/- 0.5 mg mL(-1)) and Streptococcus pyrogenes (MIC: 6.0 +/- 0.5 mg mL(-1) and 8.0 +/- 0.5 mg mL(-1)).
Salmonella enterica serovar Enteritidis infection is a common concern in poultry production for its negative effects on growth as well as food safety for humans. Identification of molecular markers that are linked to resistance to Salmonella Enteritidis may lead to appropriate solutions to control Salmonella infection in chickens. This study investigated the association of candidate genes with resistance to Salmonella Enteritidis in young chickens. Two native breeds of Malaysian chickens, namely, Village Chickens and Red Junglefowl, were evaluated for bacterial colonization after Salmonella Enteritidis inoculation. Seven candidate genes were selected on the basis of their physiological role in immune response, as determined by prior studies in other genetic lines: natural resistance-associated protein 1 (NRAMP1), transforming growth factor β3 (TGFβ3), transforming growth factor β4 (TGFβ4), inhibitor of apoptosis protein 1 (IAP1), caspase 1 (CASP1), lipopolysaccharide-induced tumor necrosis factor (TNF) α factor (LITAF), and TNF-related apoptosis-inducing ligand (TRAIL). Polymerase chain reaction-RFLP was used to identify polymorphisms in the candidate genes; all genes exhibited polymorphisms in at least one breed. The NRAMP1-SacI polymorphism correlated with the differences in Salmonella Enteritidis load in the cecum (P = 0.002) and spleen (P = 0.01) of Village Chickens. Polymorphisms in the restriction sites of TGFβ3-BsrI, TGFβ4-MboII, and TRAIL-StyI were associated with Salmonella Enteritidis burden in the cecum, spleen, and liver of Village Chickens and Red Junglefowl (P < 0.05). These results indicate that the NRAMP1, TGFβ3, TGFβ4, and TRAIL genes are potential candidates for use in selection programs for increasing genetic resistance against Salmonella Enteritidis in native Malaysian chickens.
Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from <3 to 15 MPN/g. The antibiogram testing revealed differential multi-drug resistance among S. Enteritidis and S. Typhimurium isolates. All the isolates were resistance to erythromycin, penicillin, and vancomycin whereas sensitivity was recorded for Amoxicillin/Clavulanic acid, Gentamicin, Tetracycline, and Trimethoprim. Our findings demonstrated that the retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia.
Stressors may influence chicken susceptibility to pathogens such as Salmonella enterica. Feed withdrawal stress can cause changes in normal intestinal epithelial structure and may lead to increased attachment and colonization of Salmonella. This study aimed to investigate modulatory effects of epigenetic modification by feed restriction on S. enterica serovar Enteritidis colonization in broiler chickens subjected to feed withdrawal stress. Chicks were divided into four groups: ad libitum feeding; ad libitum feeding with 24-h feed withdrawal on day 42; 60% feed restriction on days 4, 5, and 6; and 60% feed restriction on days 4, 5, and 6 with 24-h feed withdrawal on day 42. Attachment of S. Enteritidis to ileal tissue was determined using an ex vivo ileal loop assay, and heat shock protein 70 (Hsp70) expression was evaluated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Feed withdrawal stress increased S. Enteritidis attachment to ileal tissue. However, following feed withdrawal the epigenetically modified chickens had significantly lower attachment of S. Enteritidis than their control counterparts. A similar trend with a very positive correlation was observed for Hsp70 expression. It appears that epigenetic modification can enhance resistance to S. Enteritidis colonization later in life in chickens under stress conditions. The underlying mechanism could be associated with the lower Hsp70 expression in the epigenetically modified chickens.
The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.
Salmonella Enteritidis is a major cause of food poisoning worldwide, and poultry products are the main source of S. Enteritidis contamination for humans. Among the numerous strategies for disease control, improving genetic resistance to S. Enteritidis has been the most effective approach. We investigated the association between S. Enteritidis burden in the caecum, spleen, and liver of young indigenous chickens and seven candidate genes, selected on the basis of their critical roles in immunological functions. The genes included those encoding interleukin 2 (IL-2), interferon-γ (IFN-γ), transforming growth factor β2 (TGF-β2), immunoglobulin light chain (IgL), toll-like receptor 4 (TLR-4), myeloid differentiation protein 2 (MD-2), and inducible nitric oxide synthase (iNOS). Two Malaysian indigenous chicken breeds were used as sustainable genetic sources of alleles that are resistant to salmonellosis. The polymerase chain reaction restriction fragment-length polymorphism technique was used to genotype the candidate genes. Three different genotypes were observed in all of the candidate genes, except for MD-2. All of the candidate genes showed the Hardy-Weinberg equilibrium for the two populations. The IL-2-MnlI polymorphism was associated with S. Enteritidis burden in the caecum and spleen. The TGF-β2-RsaI, TLR-4-Sau 96I, and iNOS-AluI polymorphisms were associated with the caecum S. Enteritidis load. The other candidate genes were not associated with S. Enteritidis load in any organ. The results indicate that the IL-2, TGF-β2, TLR-4, and iNOS genes are potential candidates for use in selection programmes for increasing genetic resistance against S. Enteritidis in Malaysian indigenous chickens.
Environmental stressors may influence chicken performance and susceptibility to pathogens, such as Salmonella enteritidis. This study was conducted to determine the effects of heat shock protein (Hsp)70 expression on resistance to Salmonella enteritidis infection in broiler chickens subjected to heat exposure. Chicks were divided into 3 feeding regimens: ad libitum feeding (control); 60% feed restriction on d 4, 5, and 6 (FR60); and 60% feed restriction on d 4, 5, and 6 plus 1,500 mg/kg of quercetin (FR60Q). On d 35, all of the chickens were individually inoculated with 1 mL of Salmonella enteritidis (1.5 × 10(8) cfu/bird) and exposed to an ambient temperature of 37 ± 1°C and 70% RH for 3 h/d. The FR60 and FR60Q chickens had significantly lower Salmonella enteritidis colonization and lower Hsp70 expression than that of the control chickens following the heat exposure period. The least colonization was observed in the FR60Q group (1.38 log(10) cfu/g in the spleen and 1.96 log(10) cfu/g in the cecal content) and the highest was in the control group (2.1 log(10) cfu/g in the spleen and 4.42 log(10) cfu/g in the cecal content). It appears that neonatal feed restriction can enhance resistance to Salmonella enteritidis colonization in heat-stressed broiler chicks, and the underlying mechanism could be associated with the lower expression of Hsp70.
Antibacterial effect of modified sago starch-alginate edible film incorporating lemongrass oil at various concentrations was studied. Edible films were prepared from a mixture of modified sago starch and alginate. Lemongrass oil (0.1 - 0.4%, v/w) and glycerol (0 and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antibacterial activity against food pathogenic bacteria such as Escherichia coli O157:H7, Salmonella Enteritidis and Staphylococcus aureus. The edible film exhibited antibacterial activity against Escherichia coli O157:H7 and Salmonella Enteritidis by using agar diffusion assay method. For films tested against Escherichia coli O157:H7, the zone of inhibition increased significantly (p < 0.05) with addition of lemongrass oil at all levels both in the presence and absence of glycerol. The films also significantly (p < 0.05) inhibited the growth of Salmonella enteritidis only with 0.4% lemongrass oil (in the presence and absence of glycerol). However, the films containing lemongrass oil did not show any inhibition effect on Staphylococcus aureus.
Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin microtitre-plate assay (minimum inhibitory concentration, MIC), and minimum bactericidal concentration test (MBC). The MIC and MBC of AgNPs against Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, and Salmonella Enteritidis were 7.8, 3.9, 3.9, 3.9 and 7.8, 3.9, 7.8, 3.9 μg/mL, respectively. Time-kill curves were used to evaluate the concentration between MIC and bactericidal activity of AgNPs at concentrations ranging from 0×MIC to 8×MIC. The killing activity of AgNPs was fast acting against all the Gram-negative bacteria tested; the reduction in the number of CFU mL-1 was >3 Log10 units (99.9%) in 1-2 h. This study indicates that AgNPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agents for the treatment of bacterial infection including multidrug resistant bacterial infection.
Detection of enterotoxin by targeting entFM and hblA genes in Bacillus cereus BC1 strain inoculated into ready to eat food (RTF) and drink samples using polymerase chain reaction (PCR) was conducted. The B. cereus BC1 strain was confirmed as a Bacillus diarrhoeal enterotoxin (BDE) when tested by a commercially available Enzyme-linked immunosorbent assay-BDE immunoassay (ELISA-BDE immunoassay, TECRA). In the specificity study, both enterotoxin genes were detected on chromosomal DNA of B. cereus BC1 strain by showing a specific band of 1269 bp (entFM) and 874 bp (hblA), respectively. However, none of the target genes were detected for the other 15 genomic DNA bacteria (B. cereus (ATCC 11779), B. subtilis (ATCC 6633), Campylobacter jejuni (ATCC 29428), C. coli (Jabatan Kimia Malaysia, JKM), Clostridium perfringen (ATCC 13124), Enterobacter sakazaki (ATCC 51329), Escherichia coli (ATCC 43888), E. coli (ATCC 11735), Legionella pneumophila (ATCC 33152), Listeria monocytogenes (ATCC 35967), Salmonella typhi (IMR), S. enteritidis (ATCC 13076), S. typhimurium (ATCC 14028), Shigella flexeneri (ATCC 12022) and Vibrio cholerae bengal (Institute Medical Research (IMR), Malaysia) examined. The detection limit of both genes was 0.1 ng of genomic DNA. Thus, in the presence study it is evidence that the PCR analysis targeting enterotoxin of entFM and hblA genes are suitable and useful in detecting enterotoxic B. cereus in RTFs and drinks contaminated sample.
The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.
Primary lung malignancy presenting as empyema is rare, with a reported incidence of 0.3%. We report a case of a 60- year-old man presenting with unilateral pleural effusion; diagnostic thoracocentesis confirmed Salmonella empyema. Post-drainage, chest radiograph showed persisting right hemithorax opacity; subsequent computed tomography revealed a right lung mass with right upper lobe bronchus obliteration. Percutaneous biopsy confirmed advanced stage lung adenocarcinoma. We discuss the mechanism of post-obstructive pneumonia in lung cancerassociated empyema and the utility of bedside ultrasound in diagnosis of lung masses. Clinicians are alerted to the possibility of lung malignancy in elderly patients presenting with empyema.
Listeriosis and salmonellosis are the major foodborne illnesses worldwide. Over the last decade,
increasing reports about the antibiotic resistance of Listeria monocytogenes and Salmonella from diverse sources have prompted public health concerns, especially in developing countries with over reliance or misuse of antibiotic drugs in the treatment of humans and animals. In this study, antibiotic susceptibility profiles of 58 L. monocytogenes and 12 Salmonella Enteritidis strains from vegetable farms and retail markets in Malaysia were testedby the standard disk diffusion method. Listeria monocytogenes isolates were found to exhibit 100% resistance to penicillin G. Also, high resistance patterns were observed for meropenem (70.7%) and rifampicin (41.4%). The multiple antibiotic resistance (MAR) index of L. monocytogenes isolates ranged from 0.11 to 0.56. Besides, the antibiogram results revealed that multidrugresistant (MDR) S. Enteritidis were detected and all the S. Enteritidis isolates demonstrated resistance to at least four antibiotics. Ampicillin, amoxicillin, and trimethoprim failed to inhibit all the S. Enteritidis strains. Salmonella Enteritidis isolates also displayed high resistance to nalidixic acid (75.0%), trimethoprim-sulfamethoxazole (75.0%), and chloramphenicol (66.7%). Findings in this study indicated that vegetables could be potential sources of multidrug resistance of L. monocytogenes and S. Enteritidis, which can be a serious issue and a major concern for public health. Thus, there is a great need for surveillance programs in Malaysia to continuously monitor the antibiotic resistance profiles of important pathogens.
Extra-intestinal non-typhoidal Salmonella (NTS) infections are uncommon in developed countries but common in developing ones. The risk factors, clinical features and outcome of children admitted to the Department of Paediatrics, University of Malaya Medical Center, Kuala Lumpur from 1978 to 1998 with extra-intestinal NTS infections were reviewed. All positive cultures of NTS, blood, cerebrospinal fluid, urine, synovial, pericardial and other body secretions (except stools), were included. Of the 98 cases reviewed, 56 were boys and 42 girls. The mean age was 2.1 years (range: newborn to 14 years). Twenty-seven children were severely immunocompromised and 21 had underlying chronic medical disorders. Bacteraemia was the most commonly detected type of infection and meningitis the commonest focal infection. The overall mortality rate was 15%. An immunocompromised state or underlying chronic medical disorder was associated with increased mortality. The three serotypes most commonly isolated were S. enteritidis, S. paratyphi B and S. typhimurium. Most isolates were sensitive to antibiotics commonly used in salmonellosis.