Displaying publications 21 - 40 of 118 in total

Abstract:
Sort:
  1. Zhang SS, Noordin MM, Rahman SO, Haron J
    Vet Hum Toxicol, 2000 Oct;42(5):261-4.
    PMID: 11003114
    The influence of copper (Cu) overload on hepatic lipid peroxidation and antioxidation defense capacity was studied by overloading rats with copper sulphate orally (500 mg Cu/kg bw) 5 d/w for 8 w. Malondialdehyde (MDA), Cu-Zn superoxide dismutase (SOD), and Se-glutathione peroxidase (GSH-Px) were measured in serum and liver homogenate at 2, 4 and 8 w of dosing. Liver Cu concentration and alanine aminotransferase (ALT) activity were also determined. As Cu loading progressed, there were multiparameter changes with significant ALT elevation, increased MDA concentrations in serum and liver homogenate, and dramatic declines of SOD and GSH-Px activities in erythrocytes and whole blood respectively, along with marked elevation of hepatic Cu in the Cu-dosed group. Excessive Cu accumulation in the liver depressed SOD and GSH-Px activities and resulted in high MDA in serum and liver homogenate due to the lipid peroxidation induced by the Cu overload.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  2. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    Clin Exp Pharmacol Physiol, 2011 Dec;38(12):854-9.
    PMID: 21973174 DOI: 10.1111/j.1440-1681.2011.05624.x
    1. The hypotensive effect of cross-fostering in spontaneously hypertensive rats (SHR) is thought to involve adjustments in renal function. However, its association with renal anti-oxidant/oxidant balance during cross-fostering is not known. 2. The present study examined the effect of cross-fostering and in-fostering of 1-day-old offspring between SHR and Wistar-Kyoto (WKY) dams on renal anti-oxidant/oxidant status and systolic blood pressure (SBP). Renal anti-oxidant/oxidant status and SBP were determined in the offspring from 4-16 weeks of age. 3. Cross-fostered SHR had significantly lower SBP than in-fostered SHR at 6, 8 and 12 weeks, but not at 16 weeks (127 ± 1 vs 144 ± 2, 138 ± 1 vs 160 ± 1, 174 ± 2 vs 184 ± 2 and 199 ± 2 vs 194 ± 3 mmHg at 6, 8, 12 and 16 weeks, respectively). No differences in SBP were evident between cross-fostered and in-fostered WKY rats. There were no significant differences in levels of thiobarbituric acid-reactive substances (TBARS), protein carbonyl and total anti-oxidant status (TAS) or superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione S-transferase and glutathione reductase activity between cross-fostered and in-fostered SHR or WKY offspring. However, compared with WKY rats, catalase activity was higher at 6 and 16 weeks, TAS was higher at 16 weeks and GPx activity and TBARS were lower at 16 weeks in SHR. 4. It appears that cross-fostering of SHR offspring to WKY dams during the early postnatal period causes a transient delay in the rise in blood pressure in SHR and that this does not involve the renal anti-oxidant/oxidant system.
    Matched MeSH terms: Superoxide Dismutase/metabolism*
  3. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  4. Hussain RM, Abdullah NF, Amom Z
    J Integr Med, 2016 Nov;14(6):456-464.
    PMID: 27854197 DOI: 10.1016/S2095-4964(16)60279-0
    OBJECTIVE: This study investigated the effects of allylpyrocatechol (APC), the major component in ethanolic extract of Piper betle, on key oxidative stress resistance enzymes important for the survival of Staphylococcus aureus, a major pathogen in the human host.

    METHODS: Effects of APC on expressions of genes encoding catalase (katA), superoxide dismutases (SODs), including sodA and sodM, and alkyl hydroperoxide reductase (ahpC) in S· aureus were quantitated by RT-qPCR in reference to gyrA and 16S rRNA. Corresponding activities of the enzymes were also investigated. The Livak analysis was performed for verification of gene-fold expression data. Effects of APC on intracellular and extracellular reactive oxygen species (ROS) levels were determined using the nitroblue tetrazolium (NBT) reduction assay.

    RESULTS: APC-treated S· aureus cells had higher sodA and sodM transcripts at 1.5-fold and 0.7-fold expressions respectively with corresponding increase in total SOD activity of 12.24 U/mL compared to untreated cells, 10.85 U/mL (P<0.05). Expression of ahpC was highest in APC-treated cells with 5.5-fold increased expression compared to untreated cells (P<0.05). Correspondingly, ahpC activity was higher in APC-treated cells at 0.672 (A310nm) compared to untreated cells which was 0.394 (A310nm). In contrast, katA expression was 1.48-fold and 0.33-fold lower respectively relative to gyrA and 16S rRNA. Further, APC-treated cells showed decreased catalase activity of 1.8 ×10-4 (U/L or μmol/(min·L)) compared to untreated cells, which was 4.8 ×10-4 U/L (P<0.05). Absorbance readings (A575nm) for the NBT reduction assay were 0.709 and 0.695 respectively for untreated and treated cells, which indicated the presence of ROS. APC-treated S· aureus cells had lower ROS levels both extracellularly and intracellularly, but larger amounts remained intracellularly compared to extracellular levels with absorbances of 0.457 and 0.137 respectively (P<0.05).

    CONCLUSION: APC induced expressions of both sodA and sodM, resulting in increased total SOD activity in S· aureus. Higher sodA expression indicated stress induced intracellularly involving O2- , presumably leading to higher intracellular pools of H2O2. A concommittant decrease in katA expression and catalase activity possibly induced ahpC expression, which was increased the highest in APC-treated cells. Our findings suggest that in the absence of catalase, cells are propelled to seek an alternate pathway involving ahpC to reduce stress invoked by O2- and H2O2. Although APC reduced levels of ROS, significant amounts eluded its antioxidative action and remained intracellularly, which adds to oxidative stress in treated cells.

    Matched MeSH terms: Superoxide Dismutase/metabolism
  5. Qaid EYA, Abdullah Z, Zakaria R, Long I
    Neurochem Res, 2023 May;48(5):1480-1490.
    PMID: 36509985 DOI: 10.1007/s11064-022-03842-3
    The oxidative stress-induced dysregulation of the cyclic AMP response element-binding protein- brain-derived neurotrophic factor (CREB-BDNF) cascade has been linked to cognitive impairment in several studies. This study aimed to investigate the effect of minocycline on the levels of oxidative stress markers, CREB, and BDNF in lipopolysaccharide (LPS)-induced cognitive impairment. Fifty adult male Sprague Dawley rats were divided randomly into five groups. Group 1 was an untreated control group. Groups 2, 3, 4 and 5 were treated concurrently with LPS (5 mg/kg, i.p) once on day 5 and normal saline (0.7 ml/rat, i.p) or minocycline (25 and 50 mg/kg, i.p) or memantine (10 mg/kg, i.p) once daily from day 1 until day 14, respectively. From day 15 to day 22 of the experiment, Morris Water Maze (MWM) was used to evaluate learning and reference memory in rats. The levels of protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were determined by enzyme-linked immunosorbent assay (ELISA). CREB and BDNF expression and density were measured by immunohistochemistry and western blot analysis, respectively. LPS administration significantly increased escape latency to the hidden platform with decreased travelled distance, swimming speed, target crossings and time spent in the target quadrant. Besides, the hippocampal tissue of LPS rats showed increased levels of PCO and MDA, decreased levels of CAT and SOD, and reduced expression and density of BDNF and CREB. Treatment with minocycline reversed these effects in a dose-dependent manner, comparable to the effects of memantine. Both doses of minocycline treatment protect against LPS-induced cognitive impairment by reducing oxidative stress and upregulating the CREB-BDNF signalling pathway in the rat hippocampus.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  6. Ma Z, Zhang F, Ma H, Chen X, Yang J, Yang Y, et al.
    PLoS One, 2021;16(4):e0248329.
    PMID: 33857162 DOI: 10.1371/journal.pone.0248329
    The elderly usually suffer from many diseases. Improving the quality of life of the elderly is an urgent social issue. In this present study, D-galactose treated aging mice models were used to reveal the effects of different animal sources and different doses of whey protein (WP) on the immune indexes organs and intestinal flora. A total of 9 groups were set up, including normal control (NC), negative control (NS), positive control (Vc), low-, medium- and high-doses of cow WP intervention groups (CL, CM and CH for short, correspondingly) and low-, medium- and high-doses of goat WP intervention groups (GL, GM and GH for short, correspondingly). The body weight gain, thymus/body weight ratio, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, spleen immunoglobulins G (IgG), spleen interleukin-2 (IL-2) and spleen interleukin-2 (IL-6) were measured. Then, the intestinal contents were collected, and 16s genes of intestinal bacteria were sequenced to reveal the changes in bacterial flora structure. WP intervention significantly increased the weight gain, thymus/body ratio and SOD activity, but decrease the content of MDA. WP intervention increased some immune indicators. All the WP treated aging mice showed similar values of physiological indexes to that of the Vc group, even better. The relative abundance of Lactobacillus and Stenotrophomonas was increased and decreased, respectively, by both cow and goat WP. Lactobacillus may be involved in regulating the functional repair of organisms. In contrast, Stenotrophomonas might play a negative role in the immune and antioxidant capacity of the body. Combining physiological indicators and intestinal flora structure, low-concentration WP for cow and goat might be optimal for aging models.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  7. Ibrahim MH, Jaafar HZ
    Molecules, 2013 Jul 05;18(7):7957-76.
    PMID: 23884129 DOI: 10.3390/molecules18077957
    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  8. Huang D, Awad ACA, Tang C, Chen Y
    Environ Toxicol, 2024 Mar;39(3):1335-1349.
    PMID: 37955318 DOI: 10.1002/tox.24036
    BACKGROUND: Demethylnobiletin (DN), with a variety of biological activities, is a polymethoxy-flavanone (PMF) found in citrus. In the present study, we explored the biological activities and potential mechanism of DN to improve cerebral ischemia reperfusion injury (CIRI) in rats, and identified DN as a novel neuroprotective agent for patients with ischemic brain injury.

    METHODS: Rat CIRI models were established via middle cerebral artery occlusion (MCAO). Primary nerve cells were isolated and cultured in fetal rat cerebral cortex in vitro, and oxygen-glucose deprivation/reperfusion (OGD/R) models of primary nerve cells were induced. After intervention with DN with different concentrations in MCAO rats and OGD/R nerve cells, 2,3,5-triphenyltetrazolium chloride staining was used to quantify cerebral infarction size in CIRI rats. Modified neurological severity score was utilized to assess neurological performance. Histopathologic staining and live/dead cell-viability staining was used to observe apoptosis. Levels of glutathione (GSH), superoxide dismutase (SOD), reactive oxygen species (ROS) and malondialdehyde (MDA) in tissues and cells were detected using commercial kits. DN level in serum and cerebrospinal fluid of MCAO rats were measured by liquid chromatography tandem mass spectrometry. In addition, expression levels of proteins like Kelch like ECH associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nfr2) and heme oxygenase 1 (HO-1) in the Nrf2/HO-1 pathway, and apoptosis-related proteins like Cleaved caspase-3, BCL-2-associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) were determined by Western blot and immunofluorescence.

    RESULTS: DN can significantly enhance neurological function recovery by reducing cerebral infarction size and weakening neurocytes apoptosis in MCAO rats. It was further found that DN could improve oxidative stress (OS) injury of nerve cells by bringing down MDA and ROS levels and increasing SOD and GSH levels. Notably, DN exerts its pharmacological influences through entering blood-brain barrier. Mechanically, DN can reduce Keap1 expression while activate Nrf2 and HO-1 expression in neurocytes.

    CONCLUSIONS: The protective effect of DN on neurocytes have been demonstrated in both in vitro and in vivo circumstances. It deserves to be developed as a potential neuroprotective agent through regulating the Nrf2/HO-1 signaling pathway to ameliorate neurocytes impairment caused by OS.

    Matched MeSH terms: Superoxide Dismutase/metabolism
  9. Budin SB, Han CM, Jayusman PA, Taib IS
    Pak J Biol Sci, 2012 Jun 01;15(11):517-23.
    PMID: 24191625
    Fenitrothion (FNT) is extensively used as pesticide and may induce oxidative stress in various organs. Tocotrienol, a form of vitamin E found in palm oil, reduces oxidative impairments in pathological conditions. This study aims to investigate the effects of palm oil tocotrienol rich fraction (TRF) on fenitrothion-induced oxidative damage in rat pancreas. Forty male Sprague-Dawley rats were divided into four groups: control group, FNT group, TRF group and FNT+TRF group. Regimens FNT (20 mg kg(-1) b.wt.) and TRF (200 mg kg(-1) b.wt.) were force-fed for 28 consecutive days with control group only receiving corn oil. Chronic administration of fenitrothion significantly (p < 0.05) induced oxidative damage in pancreas of rats with elevated malondialdehyde and protein carbonyl level. Depletion of glutathione and significant (p < 0.05) reduction in antioxidant enzyme activities in pancreas homogenate additionally suggested induction of oxidative stress. Despite these changes in pancreas of intoxicated rats, no significant (p < 0.05) changes in blood glucose and pancreas histology were observed. Co-administration of FNT with TRF alleviated these oxidative changes and significantly (p < 0.05) restored antioxidant status. Enzymatic activities of Superoxide Dismutase (SOD) and Catalase (CAT) were normalized. In conclusion, tocotrienol rich fraction of palm oil prevents fenitrothion-induced pancreatic oxidative damage in rats.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  10. Dauqan E, Sani HA, Abdullah A, Kasim ZM
    Pak J Biol Sci, 2011 Mar 15;14(6):399-403.
    PMID: 21902064
    The objective of the study was to evaluate the effect of four different vegetable oils [red palm olein (RPO), palm olein (PO), corn oil (CO), coconut oil (COC)] on antioxidant enzymes activity of rat liver. Sixty six Sprague Dawley male rats which were randomly divided into eleven groups of 6 rats per group and were treated with 15% of RPO, PO, CO and COC for 4 and 8 weeks. Rats in the control group were given normal rat pellet only while in treated groups, 15% of additional different vegetable oils were given. After 4 weeks of treatment the catalase (CAT) activity results showed that there was no significance difference (p > or = 0.05) between the control group and treated groups while after 8 weeks of treatment showed that there was no significant different (p > or = 0.05) between control group and RPO group but the treated rat liver with PO, CO and COC groups were the lowest and it were significantly lower (> or = 0.05) than control group. For superoxide dismutase (SOD) there was no significance difference (p > or = 0.05) between the control group and treated groups of vegetable oils after 4 and 8 weeks of treatment. Thus the study indicated that there was no significant (p > or = 0.05) effect on antioxidant enzyme (superoxide dismutase) but there was significant effect (p > or = 0.05) on catalase in rat liver.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  11. Chandran G, Sirajudeen KN, Yusoff NS, Swamy M, Samarendra MS
    Oxid Med Cell Longev, 2014;2014:608512.
    PMID: 25254079 DOI: 10.1155/2014/608512
    Oxidative stress has been suggested to play a role in hypertension and hypertension induced organ damage. This study examined the effect of enalapril, an antihypertensive drug, on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat (SHR) and Nω -nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups (SHR, SHR+enalapril, SHR+L-NAME, and SHR+enalapril+L-NAME). Enalapril (30 mg kg(-1) day(-1)) was administered from week 4 to week 28 and L-NAME (25 mg kg(-1) day(-1)) was administered from week 16 to week 28 in drinking water. Systolic blood pressure (SBP) was measured during the experimental period. At the end of experimental periods, rats were sacrificed; urine, blood, and kidneys were collected for the assessment of creatinine clearance, total protein, total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and catalase (CAT), as well as histopathological examination. Enalapril treatment significantly enhanced the renal TAS level (P < 0.001) and SOD activity (P < 0.001), reduced the TBARS levels (P < 0.001), and also prevented the renal dysfunction and histopathological changes. The results indicate that, besides its hypotensive and renoprotective effects, enalapril treatment also diminishes oxidative stress in the kidneys of both the SHR and SHR+L-NAME groups.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  12. Effendy NM, Shuid AN
    Nutrients, 2014 Aug;6(8):3288-302.
    PMID: 25195641 DOI: 10.3390/nu6083288
    Postmenopausal osteoporosis can be associated with oxidative stress and deterioration of antioxidant enzymes. It is mainly treated with estrogen replacement therapy (ERT). Although effective, ERT may cause adverse effects such as breast cancer and pulmonary embolism. Labisia pumila var. alata (LP), a herb used traditionally for women's health was found to protect against estrogen-deficient osteoporosis. An extensive study was conducted in a postmenopausal osteoporosis rat model using several LP doses and duration of treatments to determine if anti-oxidative mechanisms were involved in its bone protective effects. Ninety-six female Sprague-Dawley rats were randomly divided into six groups; baseline group (BL), sham-operated (Sham), ovariectomised control (OVXC), ovariectomised (OVX) and given 64.5 μg/kg of Premarin (ERT), ovariectomised and given 20 mg/kg of LP (LP20) and ovariectomised and given 100 mg/kg of LP (LP100). The groups were further subdivided to receive their respective treatments via daily oral gavages for three, six or nine weeks of treatment periods. Following euthanization, the femora were dissected out for bone oxidative measurements which include superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA) levels.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  13. Tan BH, Chor Leow T, Foo HL, Abdul Rahim R
    Biomed Res Int, 2014;2014:469298.
    PMID: 24592392 DOI: 10.1155/2014/469298
    A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172).
    Matched MeSH terms: Superoxide Dismutase/metabolism*
  14. Ali Khan MS, Mat Jais AM, Afreen A
    Biomed Res Int, 2013;2013:185476.
    PMID: 24350249 DOI: 10.1155/2013/185476
    The present study was conducted to evaluate the antiulcerogenic effect and recognize the basic mechanism of action of Tabernaemontana divaricata (L.) R. Br. flowers. T. divaricata flower methanolic extract (TDFME) was screened for antiulcer activity versus aspirin and ethanol induced gastric ulcers at three doses--125, 250, and 500 mg/kg--orally using misoprostol as a standard. Besides histopathological examination, seven parameters, that is, ulcer index, total protein, nonprotein sulphhydryls, mucin, catalase, malondialdehyde, and superoxide dismutase levels, were estimated. In addition to HPLC profiling, GC-MS analysis and electrospray ionization--high resolution mass spectral (ESI-HRMS) analysis of crude TDFME were carried out in an attempt to identify known phytochemicals present in the extract on the basis of m/z value. The results revealed a significant increase in the levels of catalase, superoxide dismutase, mucin, and nonprotein sulphhydryls, while they revealed a reduction in ulcer index, the levels of total protein, and malondialdehyde. Histopathological observations also demonstrated the protective effect. Though all the doses of TDFME exhibited gastroprotective function, higher doses were found to be more effective. Mass spectral analysis gave a few characteristic m/z values suggesting the presence of a few known indole alkaloids, while HPLC profiling highlighted the complexity of the extract. TDFME was found to exhibit its gastroprotective effect through antioxidant mechanism and by enhancing the production of gastric mucous.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  15. Al Batran R, Al-Bayaty F, Al-Obaidi MM, Abdulla MA
    Biomed Res Int, 2013;2013:594012.
    PMID: 23844365 DOI: 10.1155/2013/594012
    The aim of the current study is to evaluate the effect of andrographolide on hyperlipidemia induced by Porphyromonas gingivalis in rats. Thirty male Sprague Dawley (SD) rats were divided into five groups as follows: group 1 (vehicle) and four experimental groups (groups 2, 3, 4, and 5) were challenged orally with P. gingivalis ATCC 33277 (0.2 mL of 1.5 ×10(12) bacterial cells/mL in 2% carboxymethylcellulose (CMC) with phosphate-buffered saline (PBS)) five times a week for one month to induce hyperlipidemia. Then, group 3 received a standard oral treatment with simvastatin 100 mg/kg, and groups 4 and 5 received oral treatment with andrographolide 20 mg/kg and 10 mg/kg, respectively, for another month. The results showed that total cholesterol (TC), low-density lipoprotein (LDL-C), and triglycerides (TG) were reduced significantly in groups treated with andrographolide. The malondialdehyde (MDA) level was low in treated groups, while antioxidant enzymes, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were significantly increased in these groups (P < 0.05). Liver tissues of the groups treated with andrographolide reduce the accumulation of lipid droplets in hepatic tissue cells. An acute toxicity test did not show any toxicological symptoms in rats.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  16. Mohd Esa N, Abdul Kadir KK, Amom Z, Azlan A
    Food Chem, 2013 Nov 15;141(2):1306-12.
    PMID: 23790918 DOI: 10.1016/j.foodchem.2013.03.086
    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  17. Naidu KR, Kumar KS, Arulselvan P, Reddy CB, Lasekan O
    Arch Pharm (Weinheim), 2012 Dec;345(12):957-63.
    PMID: 23015406 DOI: 10.1002/ardp.201200192
    A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  18. Shakirin FH, Azlan A, Ismail A, Amom Z, Yuon LC
    Oxid Med Cell Longev, 2012;2012:840973.
    PMID: 22685623 DOI: 10.1155/2012/840973
    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  19. Nathan FM, Singh VA, Dhanoa A, Palanisamy UD
    BMC Cancer, 2011;11:382.
    PMID: 21871117 DOI: 10.1186/1471-2407-11-382
    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  20. Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah A, et al.
    Adv Med Sci, 2010;55(2):281-8.
    PMID: 21147697 DOI: 10.2478/v10039-010-0046-z
    Chlorella vulgaris (CV), a fresh water alga has been reported to have hypoglycemic effects. However, antioxidant and anti-inflammatory effects of CV in diabetic animals have not been investigated to date. The aim of the present study was to investigate the role of CV in inflammation and oxidative damage in STZ-induced diabetic rats.
    Matched MeSH terms: Superoxide Dismutase/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links