Displaying publications 21 - 40 of 391 in total

Abstract:
Sort:
  1. Dahlia H, Tan LJ, Zarrahimah Z, Maria J
    Trop Biomed, 2009 Dec;26(3):341-5.
    PMID: 20237449 MyJurnal
    The isolation of Mycoplasma hyosynoviae from a piglet with severe pneumonia is described. This is the first report of M. hyosynoviae isolation in the country. The lung sample where the isolation was made was severely consolidated, suppurative and pleurisy. The pathogenicity of the M. hyosynoviae isolated has yet to be determined.
    Matched MeSH terms: Swine; Swine Diseases/diagnosis; Swine Diseases/microbiology*
  2. Uni S, Fukuda M, Uga S, Agatsuma T, Nakatani J, Suzuki K, et al.
    Parasitol Int, 2021 Aug;83:102313.
    PMID: 33662527 DOI: 10.1016/j.parint.2021.102313
    Reports of zoonotic infections with Onchocerca japonica (Nematoda: Filarioidea), which parasitizes the Japanese wild boar, Sus scrofa leucomystax, have recently increased in Japan. To predict the occurrence of infection in humans, it is necessary to determine the prevalence of O. japonica infection in the natural host animals. We investigated the presence of adult worms in the footpads, and of microfilariae in skin snips, taken from the host animals, between 2000 and 2018. Onchocerca japonica was found in 165 of 223 (74%) Japanese wild boars in Honshu and Kyushu. Among the nine regions studied, the highest prevalence of O. japonica infection was found in Oita, Kyushu, where 47 of 52 (90.4%) animals were infected. The ears were the predilection sites for O. japonica microfilariae. Adult worms of O. japonica were found more frequently in the hindlimbs than in the forelimbs of the host animals. Onchocerca takaokai was found in 14 of 52 (26.9%) Japanese wild boars in Oita. In Kakeroma Island among the Nansei Islands, both O. japonica and O. takaokai were isolated from the Ryukyu wild boar, S. s. riukiuanus. These observations could help predict future occurrences of human zoonotic onchocercosis in Japan.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/parasitology
  3. Koh FX, Kho KL, Panchadcharam C, Sitam FT, Tay ST
    Vet Parasitol, 2016 Aug 30;227:73-6.
    PMID: 27523941 DOI: 10.1016/j.vetpar.2016.05.025
    Anaplasma spp. infects a wide variety of wildlife and domestic animals. This study describes the identification of a novel species of Anaplasma (Candidatus Anaplasma pangolinii) from pangolins (Manis javanica) and Anaplasma bovis from wild boars (Sus scrofa) in Malaysia. Based on 16S rRNA gene sequences, Candidatus Anaplasma pangolinii is identified in a distinct branch within the family Anaplasmataceae, exhibiting the closest sequence similarity with the type strains of Anaplasma bovis (97.7%) and Anaplasma phagocytophilum (97.6%). The sequence also aligned closely (99.9%) with that of an Anaplasma spp. (strain AnAj360) detected from Amblyomma javanense ticks. The nearly full length sequence of the 16S rRNA gene derived from two wild boars in this study demonstrated the highest sequence similarity (99.7%) to the A. bovis type strain. Partial 16S rRNA gene fragments of A. bovis were also detected from a small population of Haemaphysalis bispinosa cattle ticks in this study. Our finding suggests a possible spread of two Anaplasma species in the Malaysian wildlife and ticks. The zoonotic potential of the Anaplasma species identified in this study is yet to be determined.
    Matched MeSH terms: Swine; Swine Diseases/microbiology*; Swine Diseases/epidemiology
  4. Heo, Chong Chin, Mohamad Abdullah Marwi, Jeffery, John, Sofian-azirun, M., Chen, Chee Dhang, Wan Omar Abdullah, et al.
    MyJurnal
    An entomological study was conducted in Tanjung Sepat, Selangor, Malaysia in May until September 2007 revealing five species of butterflies (all from family Nymphalidae) were attracted to pig carcasses placed in an oil palm plantation. Euploea mulciber (Cramer 1777), Hypolimnas bolina (Linnaeus 1758), Elymnias hypermnestra (Linnaeus 1763), Mycalesis mineus (Linnaeus 1758) and Ypthima baldus (Fabricius 1775) came to the carcasses at different stages of decomposition. From this study, we know that nymphalid butterflies are attracted to carcasses but their roles are most probably unimportant in post-mortem estimation.
    Matched MeSH terms: Swine
  5. Tan DS, Omar M, Yap TC
    Med J Malaysia, 1979 Dec;34(2):159-62.
    PMID: 548720
    Matched MeSH terms: Swine; Swine Diseases/immunology*; Swine Diseases/epidemiology
  6. Yu J, Lv X, Yang Z, Gao S, Li C, Cai Y, et al.
    Viruses, 2018 10 19;10(10).
    PMID: 30347642 DOI: 10.3390/v10100572
    Nipah disease is a highly fatal zoonosis which is caused by the Nipah virus. The Nipah virus is a BSL-4 virus with fruit bats being its natural host. It is mainly prevalent in Southeast Asia. The virus was first discovered in 1997 in Negeri Sembilan, Malaysia. Currently, it is mainly harmful to pigs and humans with a high mortality rate. This study describes the route of transmission of the Nipah virus in different countries and analyzes the possibility of the primary disease being in China and the method of its transmission to China. The risk factors are analyzed for different susceptible populations to Nipah disease. The aim is to improve people's risk awareness and prevention and control of the disease and reduce its risk of occurring and spreading in China.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/virology*
  7. Granados A, Bernard H, Brodie JF
    J Anim Ecol, 2019 06;88(6):892-902.
    PMID: 30895613 DOI: 10.1111/1365-2656.12983
    Periods of extreme food abundance, such as irregular masting events, can dramatically affect animal populations and communities, but the extent to which anthropogenic disturbances alter animal responses to mast events is not clear. In South-East Asia, dipterocarp trees reproduce in mast fruiting events every 2-10 years in some of the largest masting events on the planet. These trees, however, are targeted for selective logging, reducing the intensity of fruit production and potentially affecting multiple trophic levels. Moreover, animal responses to resource pulse events have largely been studied in systems where the major mast consumers have been extirpated. We sought to evaluate the influence of human-induced habitat disturbance on animal responses to masting in a system where key mast consumers remain extant. We used motion-triggered camera traps to quantify terrestrial mammal and bird occurrences in Sabah, Malaysian Borneo, relative to variation in fruit biomass from 69 plant families during a major (2014) and minor (2015) masting event and a non-mast year (2013), in both logged and unlogged forests. Bearded pigs (Sus barbatus) showed the clearest responses to masting and occurrence rates were highest in unlogged forest in the year following the major mast, suggesting that the pulse in fruit availability increased immigration or reproduction. We also detected local-scale spatial tracking of dipterocarp fruits in bearded pigs in unlogged forest, while this was equivocal in other species. In contrast, pigs and other vertebrate taxa in our study showed limited response to spatial or temporal variation in fruit availability in logged forest. Our findings suggest that vertebrates, namely bearded pigs, may respond to masting via movement and increased reproduction, but that these responses may be attenuated by habitat disturbance.
    Matched MeSH terms: Swine
  8. Tan CY, Lin CN, Ooi PT
    Transbound Emerg Dis, 2021 Nov;68(6):2915-2935.
    PMID: 34110095 DOI: 10.1111/tbed.14185
    Porcine circovirus 3 (PCV3) was first discovered in 2016, almost concomitantly by two groups of researchers in the United States. The novel case was reported in a group of sows with chronic reproductive problems with clinical presentation alike porcine dermatitis and nephropathy syndrome (PDNS), where metagenomic sequencing revealed a genetically divergent porcine circovirus designated PCV3. The discovery of PCV3 in a PDNS case, which used to be considered as part of PCVAD attributed to PCV2 (porcine circovirus 2), has garnered attention and effort in further research of the novel virus. Just when an infectious molecular DNA clone of PCV3 has been developed and successfully used in an in vivo pathogenicity study, yet another novel PCV strain surfaced, designated PCV4 (porcine circovirus 4). So far, PCV3 has been reported in domestic swine population globally at low to moderate prevalence, from almost all sample types including organ tissues, faecal, semen and colostrum samples. PCV3 has been associated with a myriad of clinical presentations, from PDNS to porcine respiratory disease complex (PRDC). This review paper summarizes the studies on PCV3 to date, with focus on diagnosis.
    Matched MeSH terms: Swine
  9. Pulliam JR, Field HE, Olival KJ, Henipavirus Ecology Research Group
    Emerg Infect Dis, 2005 Dec;11(12):1978-9; author reply 1979.
    PMID: 16485499
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/virology*
  10. AbuBakar S, Chang LY, Ali AR, Sharifah SH, Yusoff K, Zamrod Z
    Emerg Infect Dis, 2004 Dec;10(12):2228-30.
    PMID: 15663869
    Nipah viruses from pigs from a Malaysian 1998 outbreak were isolated and sequenced. At least two different Nipah virus strains, including a previously unreported strain, were identified. The findings highlight the possibility that the Malaysia outbreaks had two origins of Nipah virus infections.
    Matched MeSH terms: Swine/virology*; Swine Diseases/virology
  11. Raja Nhari RMH, Soh JH, Khairil Mokhtar NF, Mohammad NA, Mohd Hashim A
    PMID: 37535014 DOI: 10.1080/19440049.2023.2242955
    Lateral flow devices (LFDs) are straightforward scientific tools that have made substantial advances in recent years. They have been used in many fields including the meat industry to detect disease markers, determine meat freshness or meat species determination. They are, therefore, significant in the research of meat adulteration by mixed animal species, because food component authenticity is a serious concern encompassing health, economic, legal, and religious issues. Pork adulteration is one of the most crucial issues in the global meat industry. In this review, we discuss the various types of LFDs and recent research on the development of LFDs as an authenticity tool for detecting pig additives in meat-based products, and how regulatory authorities could adopt LFDs for their workflows. Despite the benefits of rapidity, simplicity, low cost, high sensitivity, and specificity, researchers face challenges when using LFD as a final confirmation test. Future directions are suggested for globalising the use of LFD as a halal authentication method.
    Matched MeSH terms: Swine
  12. Rahmat RA, Humphries MA, Saedon NA, Self PG, Linacre AMT
    Int J Legal Med, 2023 Sep;137(5):1353-1360.
    PMID: 37306739 DOI: 10.1007/s00414-023-03017-x
    Teeth are frequently used for human identification from burnt remains, as the structure of a tooth is resilient against heat exposure. The intricate composition of hydroxyapatite (HA) mineral and collagen in teeth favours DNA preservation compared to soft tissues. Regardless of the durability, the integrity of the DNA structure in teeth can still be disrupted when exposed to heat. Poor DNA quality can negatively affect the success of DNA analysis towards human identification. The process of isolating DNA from biological samples is arduous and costly. Thus, an informative pre-screening method that could aid in selecting samples that can potentially yield amplifiable DNA would be of excellent value. A multiple linear regression model to predict the DNA content in incinerated pig teeth was developed based on the colourimetry, HA crystallite size and quantified nuclear and mitochondrial DNA. The chromaticity a* was found to be a significant predictor of the regression model. This study outlines a method to predict the viability of extracting nuclear and mitochondrial DNA from pig teeth that were exposed to a wide range of temperatures (27 to 1000 °C) with high accuracy (99.5-99.7%).
    Matched MeSH terms: Swine
  13. Laosam P, Panpipat W, Yusakul G, Cheong LZ, Chaijan M
    PLoS One, 2021;16(10):e0258445.
    PMID: 34695136 DOI: 10.1371/journal.pone.0258445
    The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand's pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40-323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH• and ABTS•+ inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH's properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
    Matched MeSH terms: Swine
  14. Meijaard E, Erman A, Ancrenaz M, Goossens B
    Science, 2024 Jan 19;383(6680):267.
    PMID: 38236988 DOI: 10.1126/science.adn3857
    Matched MeSH terms: Swine
  15. Luby SP
    Antiviral Res, 2013 Oct;100(1):38-43.
    PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011
    Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/transmission; Swine Diseases/virology*
  16. Chua KB
    Malays J Pathol, 2010 Dec;32(2):75-80.
    PMID: 21329177 MyJurnal
    An outbreak of acute febrile encephalitis affecting pig-farm workers and owners was recognized in peninsular Malaysia as early as September 1998. The outbreak was initially thought to be due to Japanese encephalitis (JE) virus and thus very intensive prevention, control and communication strategies directed at JE virus were undertaken by the Ministry of Health and Ministry of Agriculture of Malaysia. There was an immediate change in the prevention, control and communication strategies with focus and strategies on infected pigs as the source of infections for humans and other animals following the discovery of Nipah virus. Information and understanding the risks of Nipah virus infections and modes of transmission strengthened the directions of prevention, control and communication strategies. A number of epidemiological surveillances and field investigations which were broadly divided into 3 groups covering human health sector, animal health sector and reservoir hosts were carried out as forms of risk assessment to determine and assess the factors and degree of risk of infections by the virus. Data showed that there was significant association between Nipah virus infection and performing activities involving close contact with pigs, such as processing of piglets, administering injection or medication to pigs, assisting in the birth of piglets, assisting in pig breeding, and handling of dead pigs in the affected farms. A complex process of anthropogenic driven deforestation, climatic changes brought on by El Niño-related drought, forest fire and severe haze, and ecological factors of mixed agro-pig farming practices and design of pig-sties led to the spillovers of the virus from its wildlife reservoir into pig population.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/prevention & control*; Swine Diseases/virology
  17. Chua KB
    Malays J Pathol, 2010 Dec;32(2):69-73.
    PMID: 21329176 MyJurnal
    The outbreak of Nipah virus, affecting pigs and pig-farm workers, was first noted in September 1998 in the north-western part of peninsular Malaysia. By March 1999, the outbreak had spread to other pig-farming areas of the country, inclusive of the neighbouring country, Singapore. A total of 283 human cases of viral encephalitis with 109 deaths were recorded in Malaysia from 29 September 1998 to December 1999. During the outbreak period, a number of surveillances under three broad groups; Surveillance in Human Health Sector, Surveillance in Animal Health Sector, and Surveillance for the Reservoir Hosts, were carried out to determine the prevalence, risk of virus infections and transmission in human and swine populations as well as the source and reservoir hosts of Nipah virus. Surveillance data showed that the virus spread rapidly among pigs within infected farms and transmission was attributed to direct contact with infective excretions and secretions. The spread of the virus among pig farms within and between states of peninsular Malaysia was due to movement of pigs. The transmission of the virus to humans was through close contact with infected pigs. Human to human transmission was considered a rare event though the Nipah virus could be isolated from saliva, urine, nasal and pharyngeal secretions of patients. Field investigations identified fruitbats of the Pteropid species as the natural reservoir hosts of the viruses. The outbreak was effectively brought under control following the discovery of the virus and institution of correct control measures through a combined effort of multi-ministerial and multidisciplinary teams working in close co-operation and collaboration with other international agencies.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/transmission; Swine Diseases/virology
  18. Berhane Y, Weingartl HM, Lopez J, Neufeld J, Czub S, Embury-Hyatt C, et al.
    Transbound Emerg Dis, 2008 May;55(3-4):165-74.
    PMID: 18405339 DOI: 10.1111/j.1865-1682.2008.01021.x
    Nipah virus (NiV; Paramyxoviridae) caused fatal encephalitis in humans during an outbreak in Malaysia in 1998/1999 after transmission from infected pigs. Our previous study demonstrated that the respiratory, lymphatic and central nervous systems are targets for virus replication in experimentally infected pigs. To continue the studies on pathogenesis of NiV in swine, six piglets were inoculated oronasally with 2.5 x 10(5) PFU per animal. Four pigs developed mild clinical signs, one exudative epidermitis, and one neurologic signs due to suppurative meningoencephalitis, and was euthanized at 11 days post-inoculation (dpi). Neutralizing antibodies reached in surviving animals titers around 1280 at 16 dpi. Nasal and oro-pharyngeal shedding of the NiV was detected between 2 and 17 dpi. Virus appeared to be cleared from the tissues of the infected animals by 23 dpi, with low amount of RNA detected in submandibular and bronchial lymph nodes of three pigs, and olfactory bulb of one animal. Despite the presence of neutralizing antibodies, virus was isolated from serum at 24 dpi, and the viral RNA was still detected in serum at 29 dpi. Our results indicate slower clearance of NiV from some of the infected pigs. Bacteria were detected in the cerebrospinal fluid of five NiV inoculated animals, with isolation of Streptococcus suis and Enterococcus faecalis. Staphylococcus hyicus was isolated from the skin lesions of the animal with exudative epidermitis. Along with the observed lymphoid depletion in the lymph nodes of all NiV-infected animals, and the demonstrated ability of NiV to infect porcine peripheral blood mononuclear cells in vitro, this finding warrants further investigation into a possible NiV-induced immunosuppression of the swine host.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/pathology; Swine Diseases/virology*
  19. Lam SK
    Antiviral Res, 2003 Jan;57(1-2):113-9.
    PMID: 12615307
    Nipah virus, a newly emerging deadly paramyxovirus isolated during a large outbreak of viral encephalitis in Malaysia, has many of the physical attributes to serve as a potential agent of bioterrorism. The outbreak caused widespread panic and fear because of its high mortality and the inability to control the disease initially. There were considerable social disruptions and tremendous economic loss to an important pig-rearing industry. This highly virulent virus, believed to be introduced into pig farms by fruit bats, spread easily among pigs and was transmitted to humans who came into close contact with infected animals. From pigs, the virus was also transmitted to other animals such as dogs, cats, and horses. The Nipah virus has the potential to be considered an agent of bioterrorism.
    Matched MeSH terms: Swine/virology; Swine Diseases/epidemiology*; Swine Diseases/virology
  20. Mohammed MN, Yasmin AR, Noraniza MA, Ramanoon SZ, Arshad SS, Bande F, et al.
    J Vet Sci, 2021 May;22(3):e29.
    PMID: 33908203 DOI: 10.4142/jvs.2021.22.e29
    West Nile virus (WNV), a neurotropic arbovirus, has been detected in mosquitos, birds, wildlife, horses, and humans in Malaysia, but limited information is available on WNV infection in Malaysian pigs. We tested 80 archived swine serum samples for the presence of WNV antibody and West Nile (WN) viral RNA using ID Screen West Nile Competition Multi-species enzyme-linked immunosorbent assay kits and WNV-specific primers in reverse transcription polymerase chain reaction assays, respectively. A WNV seroprevalence of 62.5% (50/80) at 95% confidence interval (51.6%-72.3%) was recorded, with a significantly higher seroprevalence among young pigs (weaner and grower) and pigs from south Malaysia. One sample was positive for Japanese encephalitis virus antibodies; WN viral RNA was not detected in any of the serum samples.
    Matched MeSH terms: Swine; Swine Diseases/blood; Swine Diseases/epidemiology*; Swine Diseases/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links