Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Lau YL, Thiruvengadam G, Lee WW, Fong MY
    Parasitol Res, 2011 Sep;109(3):871-8.
    PMID: 21455621 DOI: 10.1007/s00436-011-2315-6
    In this study, we successfully expressed a chimerical surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii in Pichia pastoris. Eighty human serum samples, including 60 from confirmed cases of toxoplasmosis, were tested against the purified recombinant SAG1/2 in Western blots. Results of Western blots targeted at Toxoplasma IgG and IgM showed that the recombinant SAG1/2 reacted with all sera from the toxoplasmosis cases but none with the Toxoplasma-negative serum samples. These results showed that the P. pastoris-derived recombinant SAG1/2 was sensitive and specific and suitable for use as antigen for detecting anti-Toxoplasma antibodies. To further investigate the immunological characteristic of the recombinant protein, the recombinant SAG1/2 was injected subcutaneously into BALB/c mice, and their serum was tested against total protein lysate of T. gondii. Mice immunized with the recombinant SAG1/2 reacted specifically with the native SAG1 and SAG2 of T. gondii. Significant proliferation of splenocytes stimulated with tachyzoite total protein lysate was observed in vaccinated BALB/c mice but not in those from negative control mice. Specific production of IFN-γ, the Th1-type cytokines, was also found in stimulated splenocytes from vaccinated mice. These results show that the chimeric protein recombinant SAG1/2 can elicit a Th1-associated protection against T. gondii infections in mice. Finally, vaccinated mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P 
    Matched MeSH terms: Toxoplasma/immunology*
  2. Saadatnia G, Ghaffarifar F, Khalilpour A, Amerizadeh A, Rahmah N
    Trop Biomed, 2011 Dec;28(3):606-14.
    PMID: 22433890 MyJurnal
    Toxoplasmosis can cause serious disease in immunocompromised patients and to congenitally infected foetuses. Appropriate laboratory investigations in potential cases of acute Toxoplasma infection are important. Excretory secretory antigen (ESA) is immunogenic during both human and experimental infections, therefore is considered as a good candidate for investigation into new infection markers. In this study, ESA was prepared from in vitro cultures of Toxoplasma gondii to identify T. gondii ESA antigenic component(s) that is/are most reactive with serum samples from probable acute cases of toxoplasmosis. Serum samples were obtained from several categories of individuals with the following Toxoplasma serology: Group I: IgM+ IgG+ (low IgG avidity) or IgM+ IgG- from sera of patients who had clinical query of toxoplasmosis (n=35). Group II: IgM- IgG+ (high IgG avidity) from chronically infected individuals (n=30). Group III: normal/healthy individuals with anti-Toxoplasma IgMIgG- (n=20). Group IV: individuals with other infections who had anti-Toxoplasma IgM- IgG- (n=10). The ESA was subjected to SDS-PAGE, followed by Western blot analysis using the above sera and probed with peroxidase conjugated anti-human IgM and IgA antibodies. The blots were then developed using chemiluminescence substrate. The selected antigenic band was excised from the gel after two dimensional electrophoresis and sent for mass spectrometry analysis using MALDI TOF-TOF. The most promising antigenic band was a 10 kDa protein which showed sensitivity of 80% in both IgM and IgA blots, and specificity of 96.7% with sera from other infections and healthy controls. The two best identifications for the 10 kDa band were ubiquitin (ribosomal protein CEP52 fusion protein) and polyubiquitin.
    Matched MeSH terms: Toxoplasma/immunology*
  3. Saadatnia G, Mohamed Z, Ghaffarifar F, Osman E, Moghadam ZK, Noordin R
    APMIS, 2012 Jan;120(1):47-55.
    PMID: 22151308 DOI: 10.1111/j.1600-0463.2011.02810.x
    Infection with Toxoplasma gondii is widespread and important in humans, especially pregnant women and immunosuppressed patients. A panel of tests is usually required for diagnosis toxoplasmosis. Excretory secretory antigen (ESA) is highly immunogenic, and thus it is a good candidate for investigation into new infection markers. ESA was prepared from tachyzoites of RH strain of T. gondii by mice intraperitoneal infection. Sera were obtained from several categories of individuals who differed in their status of anti-Toxoplasma IgM, IgG and IgG avidity antibodies. The ESA was subjected to SDS-PAGE, two-dimensional gel electrophoresis and Western blot analysis. Antigenic bands of approximate molecular weights of 12, 20 and 30 kDa, when probed with anti-human IgM-HRP and IgA-HRP, showed good potential as infection markers. The highest sensitivity of the bands was 98.7% with combination of IgM and IgA blots with sera of patients with anti-Toxoplasma IgM+ IgG+. The specificities were 84% and 70% with sera from other infections and healthy controls in IgM blots and IgA blots respectively. By mass spectrometry, the 12 kDa protein was identified as thioredoxin. The two top proteins identified for 20 kDa molecule were microneme protein 10 and dense granule protein 7; whereas that for 30 kDa were phosphoglycerate mutase 1 and phosphoglycerate mutase.
    Matched MeSH terms: Toxoplasma/immunology*
  4. Emelia O, Amal RN, Ruzanna ZZ, Shahida H, Azzubair Z, Tan KS, et al.
    Trop Biomed, 2012 Mar;29(1):151-9.
    PMID: 22543615 MyJurnal
    Schizophrenia is a pervasive neuropsychiatric disease of unknown cause. Previous studies have reported that toxoplasmosis may be a possible cause of schizophrenia. To ascertain possible relationship between Toxoplasma gondii and schizophrenia, a cross sectional study, employing an enzyme-linked immunosorbent assay (ELISA) was performed to study the seroprevalence of anti-T. gondii IgG antibody in schizophrenic patients. Furthermore, demographic data analysis from schizophrenic patients were analysed to associate toxoplasmosis with schizophrenia. A total of 288 serum samples from schizophrenic patients (n=144) and psychiatrically healthy volunteers (n=144) were recruited in this study. Interestingly, a significant result in the serointensity rate of anti-T. gondii IgG antibody (> 60 IU/mL) in schizophrenic patients (61.1%) was demonstrated as compared to psychiatrically healthy volunteers (40.8%) (X² = 4.236, p < 0.050). However, there was no significant difference between the seropositivity rate of anti-T. gondii IgG antibody between the two groups. Analysis from demographic data revealed that the seropositivity rate of anti-T. gondii IgG antibody in schizophrenic patients was significantly associated with age group of more than 40 years old (p=0.007) and between ethnic (p=0.046). Nevertheless, no significant association between seropositivity rate of anti-T. gondii IgG antibody with gender (p=0.897), duration of illness (p=0.344) and family history of schizophrenia (p=0.282) in these patients. Thus, this finding is essential as a preliminary data in Malaysia to establish the association between T. gondii and schizophrenia.
    Matched MeSH terms: Toxoplasma/immunology*
  5. Singh S, Khang TF, Andiappan H, Nissapatorn V, Subrayan V
    Trans R Soc Trop Med Hyg, 2012 May;106(5):322-6.
    PMID: 22480791 DOI: 10.1016/j.trstmh.2012.01.009
    Toxoplasma gondii is a public health risk in developing countries, especially those located in the tropics. Widespread infection may inflict a substantial burden on state resources, as patients can develop severe neurological defects and ocular diseases that result in lifelong loss of economic independence. We tested sera for IgG antibody from 493 eye patients in Malaysia. Overall age-adjusted seroprevalence was estimated to be 25% (95% CI: [21%, 29%]). We found approximately equal age-adjusted seroprevalence in Chinese (31%; 95% CI: [25%, 38%]) and Malays (29%; 95% CI: [21%, 36%]), followed by Indians (19%; 95% CI: [13%, 25%]). A logistic regression of the odds for T. gondii seroprevalence against age, gender, ethnicity and the occurrence of six types of ocular diseases showed that only age and ethnicity were significant predictors. The odds for T. gondii seroprevalence were 2.7 (95% CI for OR: [1.9, 4.0]) times higher for a patient twice as old as the other, with ethnicity held constant. In Malays, we estimated the odds for T. gondii seroprevalence to be 2.9 (95% CI for OR: [1.8, 4.5]) times higher compared to non-Malays, with age held constant. Previous studies of T. gondii seroprevalence in Malaysia did not explicitly adjust for age, rendering comparisons difficult. Our study highlights the need to adopt a more rigorous epidemiological approach in monitoring T. gondii seroprevalence in Malaysia.
    Matched MeSH terms: Toxoplasma/immunology
  6. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

    Matched MeSH terms: Toxoplasma/immunology*
  7. Amerizadeh A, Idris ZM, Khoo BY, Kotresha D, Yunus MH, Karim IZ, et al.
    Microb Pathog, 2013 Jan;54:60-6.
    PMID: 23044055 DOI: 10.1016/j.micpath.2012.09.006
    Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. Chronically-infected individuals with a compromised immune system are at risk for reactivation of the disease. In-vivo induced antigen technology (IVIAT) is a promising method for the identification of antigens expressed in-vivo. The aim of the present study was to apply IVIAT to identify antigens which are expressed in-vivo during T. gondii infection using sera from individuals with chronic toxoplasmosis. Forty serum samples were pooled, pre-adsorped against three different preparations of antigens, from each in-vitro grown T. gondii and Escherichia coli XLBlue MRF', and then used to screen a T. gondii cDNA expression library. Sequencing of DNA inserts from positive clones showed eight open reading frames with high homology to T. gondii genes. Expression analysis using quantitative real-time PCR showed that SAG1-related sequence 3 (SRS3) and two hypothetical genes were up-regulated in-vivo relative to their expression levels in-vitro. These three proteins also showed high sensitivity and specificity when tested with individual serum samples. Five other proteins namely M16 domain peptidase, microneme protein, elongation factor 1-alpha, pre-mRNA-splicing factor and small nuclear ribonucleoprotein F had lower RNA expression in-vivo as compared to in-vitro. SRS3 and the two hypothetical proteins warrant further investigation into their roles in the pathogenesis of toxoplasmosis.
    Matched MeSH terms: Toxoplasma/immunology*
  8. Ching XT, Lau YL, Fong MY, Nissapatorn V
    Parasitol Res, 2013 Mar;112(3):1229-36.
    PMID: 23274488 DOI: 10.1007/s00436-012-3255-5
    Toxoplasma gondii infects all warm-blooded animals including humans, causing serious public health problems and great economic loss in the food industry. Commonly used serological tests involve preparation of whole Toxoplasma lysate antigens from tachyzoites which are costly and hazardous. An alternative method for better antigen production involving the prokaryotic expression system was therefore used in this study. Recombinant dense granular protein, GRA2, was successfully cloned, expressed, and purified in Escherichia coli, BL21 (DE3) pLysS. The potential of this purified antigen for diagnosis of human infections was evaluated through western blot analysis against 100 human serum samples. Results showed that the rGRA2 protein has 100 and 61.5 % sensitivity towards acute and chronic infection, respectively, in T. gondii-infected humans, indicating that this protein is useful in differentiating present and past infections. Therefore, it is suitable to be used as a sensitive and specific molecular marker for the serodiagnosis of Toxoplasma infection in both humans and animals.
    Matched MeSH terms: Toxoplasma/immunology
  9. Puvanesuaran VR, Noordin R, Balakrishnan V
    Avian Dis, 2013 Mar;57(1):128-32.
    PMID: 23678741
    Toxoplasma gondii is a parasitic protozoan that infects nearly one-third of humans. The present study was performed to isolate and genotype T. gondii from free-range ducks in Malaysia. Sera, heads, and hearts from 205 ducks were obtained from four states in Peninsular Malaysia, and 30 (14.63%) sera were found to be seropositive when assayed with the modified agglutination test (MAT > or = 1:6). All the positive samples were inoculated into mice, and T. gondii was successfully isolated from four individual duck samples (1.95%), which were initially found to be strongly seropositive (MAT > or = 1:24). The isolates were subjected to PCR-RFLP analysis, and two T. gondii strains were identified: type I and type II. This is the first reported study on the genetic characterization of T. gondii isolates from free-range farm animals in Southeast Asia.
    Matched MeSH terms: Toxoplasma/immunology
  10. Deshpande PS, Kotresha D, Noordin R, Yunus MH, Saadatnia G, Golkar M, et al.
    Rev Inst Med Trop Sao Paulo, 2013 4 9;55(2):79-83.
    PMID: 23563759
    Toxoplasmosis is an important cause of congenital infection. The present study was performed to evaluate the usefulness of recombinant (r) GRA-7 cloned from nucleotides (n) 39-711 in discriminating between acute and chronic toxoplasmosis. First, commercial IgM, IgG and IgG avidity ELISAs were used to determine the serological profile of the sera. Serum samples were from 20 symptomatic patients with acute infection (low IgG avidity, IgM positive), 10 with chronic infection (high IgG avidity, IgM negative) and 10 with indeterminate IgG avidity (IgM positive) which were tested for IgG avidity status with an in-house developed IgG avidity Western blot using the rGRA-7 recombinant antigen. All 20 sera from cases of probable acute infection showed bands which either faded out completely or reduced significantly in intensity after treatment with 8 M urea, whereas the band intensities of the 10 serum samples from chronic cases remained the same. Of the 10 sera with indeterminate IgG avidity status, after treatment with 8 M urea the band intensities with six sera remained the same, two sera had completely faded bands and another two sera had significantly reduced band intensities. Discrimination between acute and chronic toxoplasmosis was successfully performed by the in-house IgG avidity Western blot.
    Matched MeSH terms: Toxoplasma/immunology*
  11. Parthasarathy S, Fong MY, Ramaswamy K, Lau YL
    Am J Trop Med Hyg, 2013 May;88(5):883-7.
    PMID: 23509124 DOI: 10.4269/ajtmh.12-0727
    Toxoplasmosis in humans and other animals is caused by the protozoan parasite Toxoplasma gondii. During the process of host cell invasion and parasitophorous vacuole formation by the tachyzoites, the parasite secretes Rhoptry protein 8 (ROP8), an apical secretory organelle. Thus, ROP8 is an important protein for the pathogenesis of T. gondii. The ROP8 DNA was constructed into a pVAX-1 vaccine vector and used for immunizing BALB/c mice. Immunized mice developed immune response characterized by significant antibody responses, antigen-specific proliferation of spleen cells, and production of high levels of IFN-γ (816 ± 26.3 pg/mL). Challenge experiments showed significant levels of increase in the survival period (29 days compared with 9 days in control) in ROP8 DNA vaccinated mice after a lethal challenge with T. gondii. Results presented in this study suggest that ROP8 DNA is a promising and potential vaccine candidate against toxoplasmosis.
    Matched MeSH terms: Toxoplasma/immunology*
  12. Amerizadeh A, Khoo BY, Teh AY, Golkar M, Abdul Karim IZ, Osman S, et al.
    BMC Infect Dis, 2013;13:287.
    PMID: 23800344 DOI: 10.1186/1471-2334-13-287
    Toxoplasma gondii is an obligate intracellular zoonotic parasite of the phylum Apicomplexa which infects a wide range of warm-blooded animals, including humans. In this study in-vivo induced antigens of this parasite was investigated using in-vivo induced antigen technology (IVIAT) and pooled sera from patients with serological evidence of acute infection.
    Matched MeSH terms: Toxoplasma/immunology*
  13. Lim SS, Othman RY
    Korean J Parasitol, 2014 Dec;52(6):581-93.
    PMID: 25548409 DOI: 10.3347/kjp.2014.52.6.581
    Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.
    Matched MeSH terms: Toxoplasma/immunology*
  14. Khan MB, Sonaimuthu P, Lau YL, Al-Mekhlafi HM, Mahmud R, Kavana N, et al.
    Parasit Vectors, 2014;7:505.
    PMID: 25388913 DOI: 10.1186/s13071-014-0505-7
    The neglected tropical diseases, echinococcosis, schistosomiasis and toxoplasmosis are all globally widespread zoonotic diseases with potentially harmful consequences. There is very limited data available on the prevalence of these infections, except for schistosmiasis, in underdeveloped countries. This study aimed to determine the seroprevalence of Echinococcus multilocularis, Schistosoma mansoni, and Toxoplasma gondii antibodies in populations from the Monduli and Babati districts in Tanzania.
    Matched MeSH terms: Toxoplasma/immunology
  15. Andiappan H, Nissapatorn V, Sawangjaroen N, Chemoh W, Lau YL, Kumar T, et al.
    Parasit Vectors, 2014;7:239.
    PMID: 24886651 DOI: 10.1186/1756-3305-7-239
    Toxoplasmosis, being one of the TORCH's infections in pregnant women, is caused by Toxoplasma gondii, an obligate intracellular protozoan parasite. This parasitic infection in pregnancy congenitally causes severe outcomes to their fetus and newborn. This study aimed to determine the seroprevalence and stages of Toxoplasma infection in pregnant women and its associated risks exposures.
    Matched MeSH terms: Toxoplasma/immunology
  16. Omar A, Bakar OC, Adam NF, Osman H, Osman A, Suleiman AH, et al.
    Korean J Parasitol, 2015 Feb;53(1):29-34.
    PMID: 25748706 DOI: 10.3347/kjp.2015.53.1.29
    The aim of this cross sectional case control study was to examine the serofrequency and serointensity of Toxoplasma gondii (Tg) IgG, IgM, and DNA among patients with schizophrenia. A total of 101 patients with schizophrenia and 55 healthy controls from Sungai Buloh Hospital, Selangor, Malaysia and University Malaya Medical Center (UMMC) were included in this study. The diagnosis of schizophrenia was made based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). The presence of Tg infection was examined using both indirect (ELISA) and direct (quantitative real-time PCR) detection methods by measuring Tg IgG and IgM and DNA, respectively. The serofrequency of Tg IgG antibodies (51.5%, 52/101) and DNA (32.67%, 33/101) among patients with schizophrenia was significantly higher than IgG (18.2%, 10/55) and DNA (3.64%, 2/55) of the controls (IgG, P=0.000, OD=4.8, CI=2.2-10.5; DNA, P=0.000, OD=12.9, CI=2.17-10.51). However, the Tg IgM antibody between patients with schizophrenia and controls was not significant (P>0.005). There was no significant difference (P>0.005) in both serointensity of Tg IgG and DNA between patients with schizophrenia and controls. These findings have further demonstrated the strong association between the active Tg infection and schizophrenia.
    Matched MeSH terms: Toxoplasma/immunology
  17. Normaznah Y, Azizah MA, Azuan MI, Latifah I, Rahmat S, Nasir MA
    PMID: 26521512
    Numerous studies have reported the prevalence of toxoplasmosis among Malaysians and various domestic animals; but there is paucity of information on its prevalence among rodents which could potentially contribute to the transmission of Toxoplasma gondii in both domestic and sylvatic fauna. Five hundred twenty-six rodents were captured from six locations in Malaysia and identified to species. Serum samples were collected from these rodents and tested for T.gondii antibodies using an immunofluorescent antibody test (IFAT). T.gondii antibodies were found in 5.9% (31/526) of the tested samples. Most of the positive antibodies were from commensal rats: Rattus exulans (9/64, 14.0%), Rattus argentiventer (2/8, 25%), Rattus rattus diardii (10/166, 6.0%) and Rattus tiomanicus (6/215, 2.7%). Only two of the forest rats were positive: Maxomys rajah (1/9, 11.1%) and Rattus bowersi (1/12, 8.3%). Eighteen point one percent of ground squirrels (Tupaia glis) tested (2/11) were positive for antibodies. The highest antibodies titer (1:1024) was found in Rattus exulans followed by T.glis (1:256). Sabak Bernam, Selangor had the highest prevalence (10.8%) followed by Baling, Kedah (5.0%) and Bagan Terap, Selangor (4.0%). None of the serum samples of rodents collected from Gua Musang, Kelantan; Jasin, Malacca; or Labis, Johor were positive. Our study reports for the first time the serologic prevalence of T.gondii antibodies among rodents in Peninsular Malaysia. Further studies are needed to confirm T.gondii infection among wild rodents, such as a bioassay, to assess their potential role in transmission of the parasite.
    Matched MeSH terms: Toxoplasma/immunology*
  18. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    Parasit Vectors, 2015;8:315.
    PMID: 26062975 DOI: 10.1186/s13071-015-0932-0
    Serological investigation remains the primary approach to achieve satisfactory results in Toxoplasma gondii identification. However, the accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize, so significant efforts have been made to find alternative reagents as capture antigens. Consequently, multi-epitope peptides are promising diagnostic markers, with the potential for improving the accuracy of diagnostic kits. In this study, we described a simple, inexpensive and improved strategy to acquire such diagnostic markers. The study was aimed at producing novel synthetic protein consisting of multiple immunodominant epitopes of several T. gondii antigens.
    Matched MeSH terms: Toxoplasma/immunology*
  19. Teh AY, Amerizadeh A, Osman S, Yunus MH, Noordin R
    Pathog Glob Health, 2016 Oct-Dec;110(7-8):277-286.
    PMID: 27697019
    The IgG avidity assay is an important tool in the management of suspected toxoplasmosis in pregnant women. This study aimed to produce new Toxoplasma gondii recombinant proteins and to assess their usefulness in an IgG avidity assay. Toxoplasma positive and negative serum samples were used, the former were categorized into low (LGA) and high (HGA) IgG avidity samples. Immunoblots were performed on 30 T. gondii cDNA clones to determine the reactivity and IgG avidity to the expressed proteins. Two of the clones were found to have diagnostic potential and were analyzed further; AG12b encoded T. gondii apical complex lysine methyltransferase (AKMT) protein and AG18 encoded T. gondii forkhead-associated (FHA) domain-containing protein. The His-tagged recombinant proteins, rAG12b and rAG18, were expressed and tested with LGA and HGA samples using an IgG avidity western blot and ELISA. With the IgG avidity western blot, rAG12b identified 86.4% of LGA and 90.9% of HGA samples, whereas rAG18 identified 81.8% of both LGA and HGA samples. With the IgG avidity ELISA, rAG12b identified 86.4% of both LGA and HGA samples, whereas rAG18 identified 77.3% of LGA and 86.4% of HGA serum samples. This study showed that the recombinant antigens were able to differentiate low avidity and high avidity serum samples, suggesting that they are potential candidates for use in the Toxoplasma IgG avidity assay.
    Matched MeSH terms: Toxoplasma/immunology*
  20. Mahdy MA, Alareqi LM, Abdul-Ghani R, Al-Eryani SM, Al-Mikhlafy AA, Al-Mekhlafi AM, et al.
    Infect Dis Poverty, 2017 Feb 13;6(1):26.
    PMID: 28190399 DOI: 10.1186/s40249-017-0243-0
    BACKGROUND: Toxoplasma gondii is a zoonotic coccidian parasite causing morbidity and mortality. In Yemen, T. gondii infection has been reported among pregnant women seeking healthcare in the main cities. However, no data are available on the prevalence of T. gondii infection and its associated risk factors among pregnant women in the rural communities of the country. Thus, the present study aimed to determine the seroprevalence of T. gondii and identify its risk factors among pregnant women in the rural communities of Taiz governorate, Yemen.

    METHODS: A total of 359 pregnant women living in the rural communities of Taiz governorate were enrolled in this study by house-to-house visits. Data were collected using a pre-designed questionnaire, and blood samples were collected and tested for the detection of anti- T. gondii IgM and IgG antibodies by enzyme-linked immunosorbent assay.

    RESULTS: The prevalence of T. gondii infection among pregnant women in this study was 46.2% (166/359). Bivariate analysis identified the age of  ≥ 30 years (odds ratio [OR] = 1.7; 95% confidence interval [CI] = 1.09-2.65, P = 0.019) and unimproved water sources (OR = 2.2; 95% CI = 1.10-4.55, P = 0.023) as factors associated with T. gondii infection among pregnant women. The multivariable analysis, however, identified unimproved water sources as an independent risk factor (adjusted OR = 2.4; 95% CI = 1.16-5.0, P = 0.018) associated with T. gondii infection among pregnant women.

    CONCLUSIONS: Pregnant women in the rural communities of Taiz, Yemen are at high risk of contracting T. gondii infection. Unimproved water sources (wells, water streams and water tanks) are significantly associated with T. gondii infection and should be considered in prevention and control strategies, especially among pregnant women.

    Matched MeSH terms: Toxoplasma/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links