MATERIALS AND METHODS: Sixteen children with GDD underwent magnetic resonance imaging (MRI) and cross-sectional DTI. Formal developmental assessment of all GDD patients was performed using the Mullen Scales of Early Learning. An automated processing pipeline for the WMT assessment was implemented. The DTI-derived metrics of the children with GDD were compared to healthy children with normal development (ND).
RESULTS: Only two out of the 17 WMT demonstrated significant differences (p<0.05) in DTI parameters between the GDD and ND group. In the uncinate fasciculus (UF), the GDD group had lower mean values for fractional anisotropy (FA; 0.40 versus 0.44), higher values for mean diffusivity (0.96 versus 0.91×10-3 mm2/s) and radial diffusivity (0.75 versus 0.68×10-3 mm2/s) compared to the ND group. In the superior cerebellar peduncle (SCP), mean FA values were lower for the GDD group (0.38 versus 0.40). Normal myelination pattern of DTI parameters was deviated against age for GDD group for UF and SCP.
CONCLUSION: The UF and SCP WMT showed microstructural changes suggestive of compromised white matter maturation in children with GDD. The DTI metrics have potential as imaging markers for inadequate white matter maturation in GDD children.
METHODS: 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3.
RESULTS: Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified.
CONCLUSION: Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD.
KEY POINTS: • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.
OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.
MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.
RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.
CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.