PURPOSE: To investigate the utility of diffusion tensor imaging (DTI) in determining the microstructural integrity of sciatic and peroneal nerves and its correlation with the MRI grading of muscle atrophy severity and clinical function in CMT as determined by the CMT neuropathy score (CMTNS).
STUDY TYPE: Prospective case-control.
SUBJECTS: Nine CMT patients and nine age-matched controls.
FIELD STRENGTH/SEQUENCE: 3 T T1 -weighted in-/out-of phase spoiled gradient recalled echo (SPGR) and DTI sequences.
ASSESSMENT: Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) values for sciatic and peroneal nerves were obtained from DTI. Muscle atrophy was graded according to the Goutallier classification using in-/out-of phase SPGRs. DTI parameters and muscle atrophy grades were compared between CMT and controls, and the relationship between DTI parameters, muscle atrophy grades, and CMTNS were assessed.
STATISTICAL TESTS: The Wilcoxon Signed Ranks test was used to compare DTI parameters between CMT and controls. The relationship between DTI parameters, muscle atrophy grades, and CMTNS were analyzed using the Spearman correlation. Receiver operating characteristic (ROC) analyses of DTI parameters that can differentiate CMT from healthy controls were done.
RESULTS: There was a significant reduction in FA and increase in RD of both nerves (P
MATERIALS AND METHODS: We searched PubMed and Scopus electronic databases to identify eligible studies according to PRISMA guidelines. Studies were extracted for information on demographics, DTI changes and associations to cognitive outcomes.
RESULTS: Six studies were selected for inclusion with 110 patients (median study size: 20). 5/6 studies found significant cognitive decline and analysed relationships to DTI changes. Decreased fractional anisotropy (FA) was consistently associated with cognitive decline. Associations clustered at specific regions of cingulum and corpus callosum. Only one study conducted multivariable analysis.
CONCLUSION: Fractional anisotropy is a clinically meaningful biomarker for radiotherapy-related cognitive decline. Studies accruing larger patient cohorts are needed to guide therapeutic changes that can abate the decline.
AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.
METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.
RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.
CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.
Methods: Thirty female Sprague-Dawley rats were sorted into 5 groups (n = 6) namely: MPv (leaf treatment); MPr (root treatment); ERT (estrogen treatment); OVXC (untreated ovariectomized control) and Sham (untreated sham-operated control). All rats (except the Sham) were ovariectomized to induce a state of estrogen deficiency that simulates menopause. Two weeks after ovariectomy, the rats were treated for 8 weeks with oral gavages of estrogen and plant extracts. The ERT group received 64.5 μg/kg/day dose of estrogen while MPv and MPr groups received 20 mg/kg/day dose of leaf and root extracts, respectively. At the end of treatment, left femora were excised from euthanized rats and investigated for changes in bone micro-architecture, mineral density, and biomechanical properties.
Results: Bone volume fraction, degree of anisotropy and structure-model-index of bone were significantly improved (p