Displaying publications 21 - 40 of 87 in total

Abstract:
Sort:
  1. Yahya S, Moghavvemi M, Almurib HA
    Sensors (Basel), 2012;12(6):6869-92.
    PMID: 22969326 DOI: 10.3390/s120606869
    Research on joint torque reduction in robot manipulators has received considerable attention in recent years. Minimizing the computational complexity of torque optimization and the ability to calculate the magnitude of the joint torque accurately will result in a safe operation without overloading the joint actuators. This paper presents a mechanical design for a three dimensional planar redundant manipulator with the advantage of the reduction in the number of motors needed to control the joint angle, leading to a decrease in the weight of the manipulator. Many efforts have been focused on decreasing the weight of manipulators, such as using lightweight joints design or setting the actuators at the base of the manipulator and using tendons for the transmission of power to these joints. By using the design of this paper, only three motors are needed to control any n degrees of freedom in a three dimensional planar redundant manipulator instead of n motors. Therefore this design is very effective to decrease the weight of the manipulator as well as the number of motors needed to control the manipulator. In this paper, the torque of all the joints are calculated for the proposed manipulator (with three motors) and the conventional three dimensional planar manipulator (with one motor for each degree of freedom) to show the effectiveness of the proposed manipulator for decreasing the weight of the manipulator and minimizing driving joint torques.
    Matched MeSH terms: Body Weights and Measures
  2. Goudarzi S, Kama MN, Anisi MH, Soleymani SA, Doctor F
    Sensors (Basel), 2018 Oct 15;18(10).
    PMID: 30326567 DOI: 10.3390/s18103459
    To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators.
    Matched MeSH terms: Body Weights and Measures
  3. Shokravi H, Shokravi H, Bakhary N, Heidarrezaei M, Rahimian Koloor SS, Petrů M
    Sensors (Basel), 2020 Jun 19;20(12).
    PMID: 32575359 DOI: 10.3390/s20123460
    Bridges are designed to withstand different types of loads, including dead, live, environmental, and occasional loads during their service period. Moving vehicles are the main source of the applied live load on bridges. The applied load to highway bridges depends on several traffic parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the bridge, number of vehicles, direction, and vehicle's speed. The estimation of traffic loadings on bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate prediction of the in-service performance of a bridge structure is very desirable and great savings can be achieved through the accurate assessment of the applied traffic load in existing bridges. In this paper, a review is conducted on conventional vehicle-based health monitoring methods used for bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle bridge interaction (VBI)-based models are the methods that are generally used in the structural health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and suggestions for future work in this area are addressed, including alleviating the downsides of each approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted methods for health monitoring of bridges.
    Matched MeSH terms: Body Weights and Measures
  4. Naz MY, Ismail NI, Sulaiman SA, Shukrullah S
    Sci Rep, 2015;5:16583.
    PMID: 26561231 DOI: 10.1038/srep16583
    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.
    Matched MeSH terms: Body Weights and Measures
  5. Cartland SP, Harith HH, Genner SW, Dang L, Cogger VC, Vellozzi M, et al.
    Sci Rep, 2017 05 15;7(1):1898.
    PMID: 28507343 DOI: 10.1038/s41598-017-01721-4
    Non-alcoholic fatty liver disease (NAFLD) incorporates steatosis, non-alcoholic steato-hepatitis (NASH) and liver cirrhosis, associating with diabetes and cardiovascular disease (CVD). TNF-related apoptosis-inducing ligand (TRAIL) is protective of CVD. We aimed to determine whether TRAIL protects against insulin resistance, NAFLD and vascular injury. Twelve-week high fat diet (HFD)-fed Trail -/- mice had increased plasma cholesterol, insulin and glucose compared to wildtype. Insulin tolerance was impaired with TRAIL-deletion, with reduced p-Akt, GLUT4 expression and glucose uptake in skeletal muscle. Hepatic triglyceride content, inflammation and fibrosis were increased with TRAIL-deletion, with elevated expression of genes regulating lipogenesis and gluconeogenesis. Moreover, Trail -/- mice exhibited reduced aortic vasorelaxation, impaired insulin signaling, and >20-fold increased mRNA expression for IL-1β, IL-6, and TNF-α. In vitro, palmitate treatment of hepatocytes increased lipid accumulation, inflammation and fibrosis, with TRAIL mRNA significantly reduced. TRAIL administration inhibited palmitate-induced hepatocyte lipid uptake. Finally, patients with NASH had significantly reduced plasma TRAIL compared to control, simple steatosis or obese individuals. These findings suggest that TRAIL protects against insulin resistance, NAFLD and vascular inflammation. Increasing TRAIL levels may be an attractive therapeutic strategy, to reduce features of diabetes, as well as liver and vascular injury, so commonly observed in individuals with NAFLD.
    Matched MeSH terms: Body Weights and Measures
  6. Jumat Salimon, Nadia Salih, Yousif E
    Sains Malaysiana, 2012;41:1239-1244.
    A series of ester compounds derived from ricinoleic acid to be used as biolubricants base stock have been synthesized. The resulting products were confirmed by FTIR and NMR analyses. The synthesis was carried out in three stages: epoxidation of ricinoleic acid; synthesis of 10,12-dihydroxy-9-acyloxystearic acid from epoxidized ricinoleic acid with various fatty acids and esterification of the acyloxystearic acid products with octanol to yield octyl-10,12-dihydroxy-9-acyloxystearate. The viscosities, flash points and pour points (PP) behavior of the products were measured. The resulting esters had an increased in molar weight and viscosity and decreased in pour points as compared to ricinoleic acid.
    Matched MeSH terms: Body Weights and Measures
  7. Mustaffa Hj. Abdullah, Tan TK
    Samples of Y-Ba-Cu-O superconductor with nominal compositions of YBa2Cu3O7-d + x (weight %) Y2O3 (x = 0 - 15) were prepared by solid state reaction method using the Y2Cu2O5 and BaCuO2 precursors as the starting reagents. The X-ray diffraction (XRD) diffractograms for the doped samples (x> 0) show an additional non-superconducting Y2BaCuO5 (211) phase. The scanning electron microscope (SEM) micrographs show that the smaller Y2BaCuO5 grains are precipitated on the surface of the larger YBa2Cu3O7-d (YBCO) crystals. The grain size of the YBCO decreases with increasing yttria. The superconducting zero resistivity critical temperature (Tco) of the doped samples is very close to the Tco of the YBCO for x < 5, but it seems to be significantly decreasing for larger x. The transport critical current density (J) for x < 5 is enhanced due to magnetic flux pinning process by the 211 phase. However, Jc decreased for larger x due to the increase of weak links at the grain boundaries of the YBCO phase.
    Sampel superkonduktor Y-Ba-Cu-O dengan komposisi nominal YBa2Cu3O7-d + x (% berat) Y2O3 (x = 0 -15) disediakan dengan kaedah tindakbalas keadaan pepejal menggunakan bahan pelopor Y2Cu2O5 dan BaCuO2 Difraktogram pembelauan sinar-X (XRD) bagi sampel yang didop (x > 0) menunjukkan wujudnya fasa tak mensuperkonduksi Y2BaCuO5 (211). Mikrograf mikroskop imbasan elektron (SEM) menunjukkan bahawa butiran Y2BaCuO5 yang lebih kecil itu termendap di atas permukaan hablur YBa2Cu3O7-d yang lebih besar. Saiz hablur YBCO mengecil dengan peningkatan yittria. Suhu genting kerintangan sifar (Tc) bagi sampel yang didop adalah hampir dengan Tco bagi YBCO untuk x<5, tetapi menurun dengan agak cepat untuk x yang lebih besar. Ketumpatan arus genting angkutan (J) untuk x < 5 meningkat jika dibandingkan dengan YBCO disebabkan oleh proses kepinan fluks magnet oleh fasa 211. Walau bagaimanapun, Jc menurun untuk x yang lebih tinggi kerana meningkatnya hubungan lemah pada sempadan butiran fasa YBCO.
    Matched MeSH terms: Body Weights and Measures
  8. Khairul Azly Zahan, Norhayati Pa’e, Ida Idayu Muhamad
    Sains Malaysiana, 2016;45:393-400.
    Acetobacter xylinum strains are known as efficient producers of cellulose. A. xylinum is an obligate aerobic bacterium that has an oxygen-based metabolism. The dissolved oxygen (DO) concentration in a rotary discs reactor (RDR) is one of the most important factors that need to be observed during the cellulose synthesis by these bacteria. In this study, the effects of different discs rotation speed (5, 7, 9 and 12 rpm) and fermentation period (3, 4, 5 and 6 days) on the DO concentration and production of bacterial cellulose in a 10-L RDR were examined. The highest yield was obtained at 7 rpm with a total dried weight of 28.3 g for 4 days fermentation. The results showed that the DO concentration in the 10-L RDR increased in the range of 13 to 17% with increasing of discs rotation speed from 7 to 12 rpm. However, fermentation with high discs rotation speed at 12 rpm reduced the bacterial cellulose production. Analysis of data using Statistica 8.0 showed a high coefficient of determination value (R2 = 0.92). In conclusion, discs rotation speed gave more significant effect on the DO concentration and production of bacterial cellulose in 10-L RDR compared to fermentation period. This was further combined with synergistic effect from sufficient consumption of oxygen for the enhanced production of bacterial cellulose and providing the controlled environment for encouraging bacterial growth throughout the fermentation process.
    Matched MeSH terms: Body Weights and Measures
  9. Nuril Aida K, Idris A
    Anochetus maryatiae, a new species of Formicidae from the subfamily Ponerinae, tribe Ponerini from Ulu Gombak is described and illustrated. This ant genus was last studied in Malaysia by Brown in 1978. Observations were made on morphometric characters which included parameter measurements of total length, head length, head width, mandible length, scape length, antenna length, maximum eye length, oculomandibular distance, funicular length segment 1 to 4, pronotum width, propodeum height, petiole length, petiole height, dorsal petiole width, cephalix index and mandibular index. It was followed by a brief diagnosis, description of morphological structure, microsculpture, pilosity and discussion. Although it has resemblance with Anochetus tua, it could be easily distinguished from other species in having reticulate pronotum. This is the only species from Malaysia with such microsculpture on the pronotum. In addition to that, A. maryatie varies with A. tua in having smaller total length, less than 7.5 mm and lighter colour.
    Matched MeSH terms: Body Weights and Measures
  10. Norizah K, Mohd. Hasmadi I
    Sains Malaysiana, 2012;41:1177-1185.
    In hilly forest area, aligning forest roads is the key towards an effective and sustainable forest management. Constraints in forest road planning are mainly due to environmental factors and topographical conditions. Selecting the criteria for planning forest road and setting the priorities, ranking them for environmental sustainability and reduce cost in road construction is important. Different criteria are required at different forest area since the quantifiable relationship between cause and effect to meet the goal are not comprehensively prioritized. In order to solve the problem, the relative importance factor from multi criteria basis, namely Analytic Hierarchy Process (AHP) was applied. Therefore, the objective of this study was to develop priorities and rank a selected criterion for planning forest road in hilly area using AHP approach. Four criteria had been identified to meet the goal of suitable forest road allocation namely slope, river crossing, elevation and existing forest road. The suitable criteria selected were sorted with weight in ranking order to minimize the impact of timber harvesting. Our results showed that the priorities and ranking were as follows; slope (w = 0.558), followed by river crossing (w = 0.303), elevation (w = 0.095) and lastly existing forest road (w = 0.044), respectively. Therefore, the relative preference factor developed in this study can be used by the Forestry Department for formulating suitable forest road allocation in hilly area simultaneously to be integrated with geographic information system technology.
    Matched MeSH terms: Body Weights and Measures
  11. Nurul Hidayah Che Mat, Md Atiqur Rahman Bhuiyan, Senan S, Ratnam W, Zahira Yaakob
    Sains Malaysiana, 2015;44:1567-1572.
    Phenotypic selection of individuals is the first step in a selective breeding program for elite hybrid seed production. In
    this study, a total of 295 Jatropha curcas individuals raised from cuttings representing 21 accessions, collected from eight
    different countries were evaluated for growth performance. The evaluation was done at the Biodiesel Research Station
    of Universiti Kebangsaan Malaysia, Kuala Pilah from December 2012 to December 2013. Individual plants from each
    accession were observed on several agronomic and yield related traits and all the data were recorded periodically.
    Performance of each accession was analyzed using Statistical Analysis System (SAS) 9.4. Four traits which were plant
    height (PH), number of flowers per inflorescence (NFI), number of female flowers per inflorescence (NFFPI) and hundred
    seed weight (HSW) showed significant differences among the accessions after one year of planting. Maximum values for
    each trait were 115.5 cm for PH, 6 for number of branches per plant (BPP), 9 for number of inflorescences per plant
    (NIPP), 25 for number of fruits per plant (NFPP), 5 for number of fruits per inflorescence (NFPI), 191 for NFI, 10 for
    NFFPI, 81.0 g for HSW and 70 for number of seeds per plant (NSPP). Accession number 1 from Thailand showed the best
    performance for most traits. A highly significant and positive correlation was found between NFPP and NSPP. Based on
    superior trait values for NIPP, NFPP, NFPI, NFI, NFFPI and HSW, five plants from accession UKMJC 01, 04, 05, 13 and 14
    have been selected for generating elite intraspecific hybrids.
    Matched MeSH terms: Body Weights and Measures
  12. Gokhan Gunduz, Barbaros Yaman, Seray Ozden, Suleyman Donmez
    Sains Malaysiana, 2013;42:547-552.
    Composite archery bows have been well known and used by Asiatic societies for thousands of years. The Turkish composite bow, made of wood, horn, sinew and glue is one of the most famous and powerful bows in the world. Because of its high draw weight and mechanical efficiency, the Turkish composite bow became a powerful weapon in the Seljuk and the Ottoman empire. In addition to being a powerful weapon of war, at the same time the bow and arrow (archery) continued
    to be a sport of Ottoman (sultans, state officials, janissaries) until the late Ottoman period. In this study of the Ottoman composite archery bows in the collections of Izmir Ethnography Museum, a small wood sample was investigated on the basis of its wood anatomy. The results showed that it was made of maple wood (Acer sp.) and some of its qualitative and quantitative anatomical properties are presented here. One of the key properties for the identification of maple wood is
    the helical thickening throughout the body of the vessel element. Helical thickenings in vessel elements in cutting surfaces of maple-wooden core increase the bonding surface between the wood and sinew-horn. In most of the woods preferred traditionally for bow-making, helical thickenings in tracheids, vessel elements or ground tissue fibres should be taken into account at a hierarchy of cellular structures for elucidating the efficiency of Ottoman composite-wooden bow.
    Matched MeSH terms: Body Weights and Measures
  13. Johari A, Mat R, Alias H, Hashim H, Hassim M, Zakaria Z, et al.
    Sains Malaysiana, 2014;43:103-109.
    The combustion characteristics of refuse derived fuel (RDF) in a fluidized bed have been studied. The gross heating value (GHv) of the RDF was 14.43 MJIkg with moisture content of 25% by weight. Parameters of interest for sustainable bed combustion were the fluidization number and primary air factor. The study was performed in a rectangular fluidized bed combustor with dimensions of 0.3 m in width, 0.7 m in length and 2 m in height. Sand with mean particle size of 0.34 mm was used as a fluidization medium. The sand bed height was at 0.3 m above the standpipes air distributor. The range of fluidization number under investigation was 5-7 II fin which 5 II newas found to be the optimum. The study was continued for the determination of the optimum primary air factor with the selected range of primary air factors being 0.6, 0.8, 1.0 and 12 in experiments conducted at 5 Unit The final results showed that the optimum primary air factor was at 0.8. An energy balance was also performed to determine the thermal efficiency of the combustion. It was concluded that the thermal efficiency depended on the bed temperature and the primary air factor being used.
    Matched MeSH terms: Body Weights and Measures
  14. Nor Hasliza Mat Desa, Maznah Mat Kasim, Abdul Aziz Jemain
    Sains Malaysiana, 2015;44:239-247.
    The issue of age difference in hospital admission should be given special attention since it affects the structure of hospital care and treatments. Patients of different age groups should be given different priority in service provision. Due to crucial time and limited resources, healthcare managers need to make wise decisions in identifying priorities in age of admission. This paper aimed to propose a construction of a daily composite hospital admission index (CHAI) as an indicator that captures relevant information about the overall performance of hospital admission over time. It involves five different age groups of total patients admitted to seven major public hospitals in the Klang Valley, Malaysia for respiratory and cardiovascular diseases for a period of three years, 2008 - 2010. The criteria weights were predetermined by aggregating the subjective weight based on rank ordered centroid (ROC) method and objective weight based on entropy - kernel method. The highest and lowest scores of CHAI were marked, while the groups of patients were prioritized according to the criteria weight ranking orders.
    Matched MeSH terms: Body Weights and Measures
  15. Melek Zeng?n, Semra Sayg?n, Nazm? Polat
    Sains Malaysiana, 2015;44:657-662.
    Otoliths, which can be used for the evaluation of relationships between the environment and organisms, are structures
    consisting of calcium carbonate. The aim of this study was to realize the shape analysis. In addition, it is to detect the
    characteristics of otolith biometrics in order to determine the relationship between the fish size of Engraulis encrasicolus
    L. from the Black and Marmara Seas. The samples were obtained from the Black and Marmara Seas between December
    2013 and February 2014. The relationships between the TL (Total length) and OL (Otolith length), TL and OB (Otolith
    breadth), and TL and OW (Otolith weight) were determined using the linear regression equation. Form factor, roundness,
    circularity and rectangularity were used for shape analyses. According to the data, there was no difference between
    localities (p>0.05). Moreover, there was no difference between the left and right otoliths of the individuals sampled from
    the same locality (p>0.05). According to the regression coefficient for relationships of TL-OL, TL-OB and TL-OW, otolith
    length was identified as the best index for estimating fish length (r
    2
    >0.70). It showed that index values were statistically
    different between two populations (p<0.001).
    Matched MeSH terms: Body Weights and Measures
  16. Liu Y, Chapple V, Roberts P, Ali J, Matson P
    Reprod Biol, 2014 Dec;14(4):249-56.
    PMID: 25454490 DOI: 10.1016/j.repbio.2014.08.003
    A total of 341 fertilized and 37 unfertilized oocytes from 63 intracytoplasmic sperm injection (ICSI) treatment cycles were included for retrospective assessment using the Embryoscope time-lapse video system. The second polar body (pb2) extrusion occurred at 2.9±0.1 h (range 0.70-10.15 h) relative to sperm injection. All oocytes reduced in size following sperm injection (p<0.05) with shrinkage ceasing after 2h in the unfertilized and at pb2 extrusion in the fertilized oocytes. Pb2 extrusion was significantly delayed for women aged >38 years compared to those <35 years (3.4±0.2 vs. 2.8±0.1, p<0.01) or 35-38 years (3.4±0.2 vs. 2.8±0.1, p<0.01), but timing was not related to the Day 3 morphological grades (1-4) of subsequent embryos (2.9±0.1, 2.9±0.1, 2.8±0.2 and 3.0±0.1; p>0.05 respectively). A shorter time of first cleavage division relative to either sperm injection or pb2 extrusion is associated with both top grade (AUC=0.596 or 0.601, p=0.006 or 0.004) and usable embryos (AUC=0.638 or 0.632, p=0.000 respectively) on Day 3. In summary, (i) pb2 of human oocytes extrudes at various times following sperm injection, (ii) the timing of pb2 extrusion is significantly delayed when female age >38 years, but not related to subsequent embryo development, (iii) all human oocytes reduce in size following sperm injection, (iv) completion of pb2 extrusion in the fertilized oocytes is a pivotal event in terminating shrinkage of the vitellus, and (v) time to first cleavage division either from sperm injection or pb2 extrusion is a significant predictive marker for embryo quality on Day 3.
    Matched MeSH terms: Body Weights and Measures
  17. Hazrol MD, Sapuan SM, Zainudin ES, Zuhri MYM, Abdul Wahab NI
    Polymers (Basel), 2021 Jan 12;13(2).
    PMID: 33445740 DOI: 10.3390/polym13020242
    The research included corn starch (CS) films using sorbitol (S), glycerol (G), and their combination (SG) as plasticizers at 30, 45, and 60 wt %, with a traditional solution casting technique. The introduction of plasticizer to CS film-forming solutions led to solving the fragility and brittleness of CS films. The increased concentration of plasticizers contributed to an improvement in film thickness, weight, and humidity. Conversely, plasticized films reduced their density and water absorption, with increasing plasticizer concentrations. The increase in the amount of the plasticizer from 30 to 60% showed a lower impact on the moisture content and water absorption of S-plasticized films. The S30-plasticized films also showed outstanding mechanical properties with 13.62 MPa and 495.97 MPa, for tensile stress and tensile modulus, respectively. Glycerol and-sorbitol/glycerol plasticizer (G and SG) films showed higher moisture content and water absorption relative to S-plasticized films. This study has shown that the amount and type of plasticizers significantly affect the appearances, physical, morphological, and mechanical properties of the corn starch biopolymer plastic.
    Matched MeSH terms: Body Weights and Measures
  18. Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS, et al.
    Polymers (Basel), 2019 Oct 11;11(10).
    PMID: 31614623 DOI: 10.3390/polym11101656
    This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA-chitin, PLA-starch and PLA-chitin-starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young's modulus, and impact showed that the PLA-chitin-starch blend has the best mechanical properties compared to PLA-chitin and PLA-starch blends. The dynamic mechanical analysis result shows a better damping property for PLA-chitin than PLA-chitin-starch and PLA-starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA-chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA-chitin-starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA-chitin and PLA-starch samples.
    Matched MeSH terms: Body Weights and Measures
  19. Kitano YF, Benzoni F, Arrigoni R, Shirayama Y, Wallace CC, Fukami H
    PLoS One, 2014;9(5):e98406.
    PMID: 24871224 DOI: 10.1371/journal.pone.0098406
    The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadoporites, Porites, Poritipora, and Stylaraea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadoporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadoporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylaraea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadoporites and Poritipora are merged with Goniopora.
    Matched MeSH terms: Body Weights and Measures
  20. Kok KY, Rajendran P
    PLoS One, 2016;11(3):e0150558.
    PMID: 26943630 DOI: 10.1371/journal.pone.0150558
    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost.
    Matched MeSH terms: Body Weights and Measures
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links