Displaying publications 21 - 40 of 40 in total

Abstract:
Sort:
  1. Mirzasadeghi A, Narayanan SS, Ng MH, Sanaei R, Cheng CH, Bajuri MY, et al.
    Biomed Mater Eng, 2014;24(6):2177-86.
    PMID: 25226916 DOI: 10.3233/BME-141029
    The application of bone substitutes and cements has a long standing history in augmenting fractures as a complement to routine fracture fixation techniques. Nevertheless, such use is almost always in conjunction with definite means of fracture fixation such as intramedullary pins or bone plates. The idea of using biomaterials as the primary fixation bears the possibility of simultaneous fixation and bone enhancement. Intramedullary recruitment of bone cements is suggested in this study to achieve this goal. However, as the method needs primary testings in animal models before human implementation, and since the degree of ambulation is not predictable in animals, this pilot study only evaluates the outcomes regarding the feasibility and safety of this method in the presence of primary bone fixators. A number of two sheep were used in this study. Tibial transverse osteotomies were performed in both animals followed by external skeletal fixation. The medullary canals, which have already been prepared by removing the marrow through proximal and distal drill holes, were then injected with calcium phosphate cement (CPC). The outcomes were evaluated postoperatively by standard survey radiographs, morphology, histology and biomechanical testings. Healing processes appeared uncomplicated until week four where one bone fracture recurred due to external fixator failure. The results showed 56% and 48% cortical thickening, compared to the opposite site, in the fracture site and proximal and distal diaphyses respectively. This bone augmentative effect resulted in 264% increase in bending strength of the fracture site and 148% increase of the same value in the adjacent areas of diaphyses. In conclusion, IMCO, using CPC in tibia of sheep, is safe and biocompatible with bone physiology and healing. It possibly can carry the osteopromotive effect of the CPCs to provide a sustained source of bone augmentation throughout the diaphysis. Although the results must be considered preliminary, this method has possible advantages over conventional methods of bone fixation at least in bones with compromised quality (i.e. osteoporosis and bone cysts), where rigid metal implants may jeopardize eggshell cortices.
    Matched MeSH terms: Bone Cements/therapeutic use*
  2. Razuin R, Effat O, Shahidan MN, Shama DV, Miswan MF
    Malays J Pathol, 2013 Jun;35(1):87-90.
    PMID: 23817399 MyJurnal
    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material.
    Matched MeSH terms: Bone Cements/adverse effects*
  3. Abd Samad H, Jaafar M, Othman R, Kawashita M, Abdul Razak NH
    Biomed Mater Eng, 2011;21(4):247-58.
    PMID: 22182792 DOI: 10.3233/BME-2011-0673
    In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS® LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test.
    Matched MeSH terms: Bone Cements/chemistry*
  4. Pan KL, Ong GB, Potukuchi AP
    Med J Malaysia, 2006 Dec;61 Suppl B:55-7.
    PMID: 17600994
    We report a case of an 11-year-old boy with osteosarcoma of the proximal humerus treated with wide excision and reconstruction with a cement spacer-prosthesis. After seven years of follow-up, the patient is now almost a young adult. We present his current physical and functional status, which seems to defray the initial doubts regarding long-term problems when we chose this method of reconstruction.
    Matched MeSH terms: Bone Cements*
  5. Wahab AH, Kadir MR, Harun MN, Kamarul T, Syahrom A
    Med Biol Eng Comput, 2017 Mar;55(3):439-447.
    PMID: 27255451 DOI: 10.1007/s11517-016-1525-6
    The present study was conducted to compare the stability of four commercially available implants by investigating the focal stress distributions and relative micromotion using finite element analysis. Variations in the numbers of pegs between the implant designs were tested. A load of 750 N was applied at three different glenoid positions (SA: superior-anterior; SP: superior-posterior; C: central) to mimic off-center and central loadings during activities of daily living. Focal stress distributions and relative micromotion were measured using Marc Mentat software. The results demonstrated that by increasing the number of pegs from two to five, the total focal stress volumes exceeding 5 MPa, reflecting the stress critical volume (SCV) as the threshold for occurrence of cement microfractures, decreased from 8.41 to 5.21 % in the SA position and from 9.59 to 6.69 % in the SP position. However, in the C position, this change in peg number increased the SCV from 1.37 to 5.86 %. Meanwhile, micromotion appeared to remain within 19-25 µm irrespective of the number of pegs used. In conclusion, four-peg glenoid implants provide the best configuration because they had lower SCV values compared with lesser-peg implants, preserved more bone stock, and reduced PMMA cement usage compared with five-peg implants.
    Matched MeSH terms: Bone Cements/pharmacology
  6. Jacobs E, Saralidze K, Roth AK, de Jong JJ, van den Bergh JP, Lataster A, et al.
    Biomaterials, 2016 Mar;82:60-70.
    PMID: 26751820 DOI: 10.1016/j.biomaterials.2015.12.024
    There are a number of drawbacks to incorporating large concentrations of barium sulfate (BaSO4) as the radiopacifier in PMMA-based bone cements for percutaneous vertebroplasty. These include adverse effects on injectability, viscosity profile, setting time, mechanical properties of the cement and bone resorption. We have synthesized a novel cement that is designed to address some of these drawbacks. Its powder includes PMMA microspheres in which gold particles are embedded and its monomer is the same as that used in commercial cements for vertebroplasty. In comparison to one such commercial cement brand, VertaPlex™, the new cement has longer doughing time, longer injection time, higher compressive strength, higher compressive modulus, and is superior in terms of cytotoxicity. For augmentation of fractured fresh-frozen cadaveric vertebral bodies (T6-L5) using simulated vertebroplasty, results for compressive strength and compressive stiffness of the construct and the percentage of the volume of the vertebral body filled by the cement were comparable for the two cements although the radiopacity of the new cement was significantly lower than that for VertaPlex™. The present results indicate that the new cement warrants further study.
    Matched MeSH terms: Bone Cements/chemical synthesis*
  7. Premnath N, Lo HL, Cheong YT, Manjit S
    Med J Malaysia, 2002 Sep;57(3):368-70.
    PMID: 12440279
    Removal of the whole sternum for malignant tumours results in a large defect, causing severe deformity and possible paradoxical movements of the chest wall. The reconstruction of the resultant large defect of the chest wall is often complex and difficult. Commonly used materials include rib autograft, steel strus acrylic plate and various synthetic meshes such as Goretex or Marlex mesh, with a myocutaneous flap for coverage. A case of a 48-year-old man with sternal chondrosarcoma successfully treated with thoracoplasty using acrylic plate-marlex mesh combination following near total resection of sternum is reported.
    Matched MeSH terms: Bone Cements/therapeutic use*
  8. Singh VA, Wei CC, Haseeb A, Shanmugam R, Ju CS
    J Orthop Surg (Hong Kong), 2019 2 26;27(1):2309499018822247.
    PMID: 30798727 DOI: 10.1177/2309499018822247
    PURPOSE: Bone cement is commonly used as a void filler for bone defects. Antibiotics can be added to bone cement to increase local drug delivery in eradicating infection. After antibiotic elution, nonbiodegradable material becomes an undesirable agent. The purpose of this study was to evaluate effects of addition of vancomycin on the compressive strength of injectable synthetic bone substitute, JectOS®. JectOS, a partially biodegradable cement that over time dissolves and is replaced by bone, could be potentially used as a biodegradable antibiotic carrier.

    METHODS: Vancomycin at various concentrations was added to JectOS and polymethyl methacrylate (PMMA). Then, the cement was molded into standardized dimensions for in vitro testing. Cylindrical vancomycin-JectOS samples were subjected to compressive strength. The results obtained were compared to PMMA-vancomycin compressive strength data attained from historical controls. The zone of inhibition was carried out using vancomycin-JectOS and vancomycin-PMMA disk on methicillin-resistant strain culture agar.

    RESULTS: With the addition of 2.5%, 5%, and 10% vancomycin, the average compressive strengths reduced to 8.01 ± 0.95 MPa (24.6%), 7.52 ± 0.71 MPa (29.2%), and 7.23 ± 1.34 MPa (31.9%). Addition of vancomycin significantly weakened biomechanical properties of JectOS, but there was no significant difference in the compressive strength at increasing concentrations. The average diameters of zone of inhibition for JectOS-vancomycin were 24.7 ± 1.44 (2.5%) mm, 25.9 ± 0.85 mm (5%), and 26.8 ± 1.81 mm (10%), which outperformed PMMA.

    CONCLUSION: JectOS has poor mechanical performance but superior elution property. JectOS-vancomycin cement is suitable as a void filler delivering high local concentration of vancomycin. We recommended using it for contained bone defects that do not require mechanical strength.

    Matched MeSH terms: Bone Cements/chemistry*
  9. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Bone Cements
  10. Narhari P, Haseeb A, Lee S, Singh VA
    Indian J Orthop, 2018 2 9;52(1):87-90.
    PMID: 29416176 DOI: 10.4103/ortho.IJOrtho_495_17
    Chondroblastomas are a primary benign cartilaginous tumor that accounts for approximately 1% of all benign bone tumors. Primarily they are treated by curettage. The patient presented 4 years after a successfully treated chondroblastoma (curettage and Bone cement). Wide resection of the proximal tibia with endoprosthesis replacement was done. Lung CT showed multiple lung metastasis and despite starting chemotherapy, he succumbed to the disease. We discuss regarding the possibilities of "aggressive" chondroblastoma and more recently termed chondroblastoma-like osteosarcoma which is a separate entity from chondroblastoma. Aggressiveness in chondroblastoma can be 1 of 3 types as follows: 1. benign chondroblastoma with lung metastasis. 2. malignant chondroblastoma. 3. subsequent malignant transformation of benign chondroblastoma. We have attempted to review the literature and describe the "aggressive" chondroblastoma and chondroblastoma-like osteosarcoma in this report.
    Matched MeSH terms: Bone Cements
  11. Pan, K.L., Chan, W.H.
    Malays Orthop J, 2010;4(2):51-53.
    MyJurnal
    Giant cell tumours of bone are best treated by extended curettage and filling in of the defect with cement or bone graft. In more advanced stages, when there is extensive loss of cortical bone cover, containment of the filling material is not possible and resection and reconstruction is required. We report a case of a recurrent giant cell tumour of the distal tibia in a 21-year-old female with extensive cortical bone loss in which polypropylene surgical mesh was used to contain the bone cement, thus avoiding a resection.
    Matched MeSH terms: Bone Cements
  12. Mohamed-Haflah NH, Kassim Y, Zuchri I, Zulmi W
    Malays Orthop J, 2017 Mar;11(1):28-34.
    PMID: 28435571 MyJurnal DOI: 10.5704/MOJ.1703.013
    INTRODUCTION: The role of surgery in skeletal metastasis is to reduce morbidity and improve the quality of life in terminally ill patients. We report our experience with patients who underwent skeletal reconstructive surgery for metastatic bone tumour of the femur.

    MATERIALS AND METHODS: Twenty nine operations for skeletal metastasis of the femur performed in our centre between 2009 and 2015 were included in this study. We evaluated the choice of implant, complications, survival rate and functional outcome. Fourteen patients were still alive at the time of this report for assessment of functional outcome using Musculoskeletal Tumour Society (MSTS) form.

    RESULTS: Plating osteosynthesis with augmented-bone cement was the most common surgical procedure (17 patients) performed followed by arthroplasty (10 patients) and intramedullary nailing (2 patients) There were a total of five complications which were implant failures (2 patients), surgical site infection (2 patients), and site infection mortality (1 patient). The median survival rate was eight months. For the functional outcome, the mean MSTS score was 66%.

    CONCLUSION: Patients with skeletal metastasis may have prolonged survival and should undergo skeletal reconstruction to reduce morbidity and improve quality of life. The surgical construct should be stable and outlast the patient to avoid further surgery.

    Matched MeSH terms: Bone Cements
  13. Wam, B.L., Chee, E.K., Ewe, T.W.
    Malays Orthop J, 2010;4(3):11-15.
    MyJurnal
    The PROSTALAC (PROSThesis Antibiotic Loaded Acrylic Cement) functional spacer is made with antibiotic-loaded acrylic cement. We use it as an interim spacer in two-stage exchange arthroplasty in cases of infected total knee or total hip replacement. PROSTALAC allows continuous rehabilitation between stages as it maintains good alignment and stability of the joint with a reasonable range of movement. It also helps to maintain the soft-tissue planes, thereby facilitating the second-stage procedure. We report here early outcomes of the use of PROSTALAC in 5 patients - 3 in total knee replacements, 1 in a total hip replacement and 1 in a bipolar hemiarthroplasty.
    Matched MeSH terms: Bone Cements
  14. Looi, Collin Seng-Kim
    MyJurnal
    Background: To assess the effect of cement vertebroplasty on the activity of daily living of elderly patients who have sustained a vertebral osteoporotic fracture.
    Patients and Methods: Seven patients with clinically significant and radiologically proven osteoporotic vertebral compression fractures suitable to be treated with percutaneous cement vertebroplasty were recruited. Evaluation was based on pre- and postprocedure activity by clinical documentation (including interview) and by a self-developed questionnaire (including quality of life).
    Results: Following the procedure, 54% of patients resumed their activities of daily living with minimal pain while 46% of patients were able to do so without any pain (p
    Matched MeSH terms: Bone Cements
  15. Ruzaimi MY, Shahril Y, Masbah O, Salasawati H
    Med J Malaysia, 2006 Feb;61 Suppl A:21-6.
    PMID: 17042224
    Deep surgical site infection is a devastating consequence of total joint arthroplasty. The use of antibiotic impregnated bone cement is a well-accepted adjunct for treatment of established infection and prevention of deep orthopaedic infection. It allows local delivery of the antibiotic at the cement-bone interface and sustained release of antibiotic provides adequate antibiotic coverage after the wound closure. Preclinical testing, randomised and clinical trials indicate that the use of antibiotic-impregnated bone cement is a potentially effective strategy in reducing the risk of deep surgical site infection following total joint arthroplasty. The purpose of this study was to assess antibacterial activity of erythromycin and colistin impregnated bone cement against strains of organisms' representative of orthopaedic infections including Gram-positive and Gram-negative aerobic organisms: Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus sp., Proteus sp., Klebsiella sp., Pseudomonas sp., and Escherichia coli. Pre-blended Simplex P bone cement with the addition of erythromycin and colistin (Howemedica Inc) was mixed thoroughly with 20ml liquid under sterile conditions to produce uniform cylindrical discs with a diameter of 14mm and thickness of 2mm. 24-48 hour agar cultures of Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus sp.,Proteus sp., Klebsiella sp.,Pseudomonas sp., and Escherichia coli were used for the agar diffusion tests. The agar plates were streaked for confluent growth followed by application of erythromycin and colistin impregnated bone cement disc to each agar plate. The plates were incubated at 30 degrees C and examined at 24, 48, 72 hours, and four and five days after the preparation of the impregnated cement. The susceptibility of Staphylococcus aureus to the control discs was most clearly demonstrated showing a distinct zone of inhibition. The zone observed around coagulase-negative Staphylococci, Klebsiella sp., Pseudomonas sp., and Escherichia coli were also significant. However, there was no zone of inhibition or signs of antibacterial activity at the cemented surface were detected around discs with Enterococcus sp. and Proteus sp. The results showed that Simplex P bone cement with the addition of erythromycin and colistin was effective against most of the broad spectrum organisms encountered during total joint arthroplasty. The activity of Simplex P bone cement impregnated with erythromycin and colistin is mainly during the first 72 hours.
    Matched MeSH terms: Bone Cements*
  16. Mohd Fuad D, Masbah O, Shahril Y, Jamari S, Norhamdan MY, Sahrim SH
    Med J Malaysia, 2006 Feb;61 Suppl A:27-9.
    PMID: 17042225
    Antibiotic-loaded bone cement has been used as prophylaxis against infection in total joint replacement surgery. Its effect on the mechanical strength of cement is a major concern as high dose of antibiotic was associated with a significant reduction in mechanical strength of bone cement. However, the cut-off antibiotic that weakens the mechanical strength of cement remains to be determined. This study was undertaken to observe the changes in the mechanical properties of bone cement with gradual increments of Cefuroxime antibiotic. Cefuroxime at different doses: 0, 1.5, 3.0 and 4.5gm were added to a packet of 40gm bone cement (Simplex P) and study samples were prepared by using third generation cementing technique. Mechanical impact, flexural and tensile strength were tested on each sample. Significant impact and tensile strength reduction were observed after addition of 4.5 gm of Cefuroxime. However, flexural strength was significantly reduced at a lower dose of 3.0 gm. The maximum dose of Cefuroxime to be safely added to 40mg Surgical Simplex P is 1.5gm when third generation cementing technique is used. Further study is needed to determine whether it is an effective dose as regards to microbiological parameters.
    Matched MeSH terms: Bone Cements/analysis*
  17. Hashim S, Chin LY, Krishnasamy S, Sthaneswar P, Raja Mokhtar RA
    J Cardiothorac Surg, 2015;10:32.
    PMID: 25890367 DOI: 10.1186/s13019-015-0230-0
    Recently a biocompatible bone adhesive was introduced in addition to the sternal wires to expedite sternal union and improve patient recovery. In this study we aim to objectively assess the biomarker of pain in patient who received the biocompatible bone adhesive.
    Matched MeSH terms: Bone Cements/therapeutic use*
  18. Chiu CK, Lisitha KA, Elias DM, Yong VW, Chan CYW, Kwan MK
    J Orthop Surg (Hong Kong), 2018 10 26;26(3):2309499018806700.
    PMID: 30352524 DOI: 10.1177/2309499018806700
    BACKGROUND: This prospective clinical-radiological study was conducted to determine whether the dynamic mobility stress radiographs can predict the postoperative vertebral height restoration, kyphosis correction, and cement volume injected after vertebroplasty.

    METHODS: Patients included had the diagnosis of significant back pain caused by osteoporotic vertebral compression fracture secondary to trivial injury. All the patients underwent routine preoperative sitting lateral spine radiograph, supine stress lateral spine radiograph, and supine anteroposterior spine radiograph. The radiological parameters recorded were anterior vertebral height (AVH), middle vertebral height (MVH), posterior vertebral height (PVH), MVH level below, wedge endplate angle (WEPA), and regional kyphotic angle (RKA). The supine stress versus sitting difference (SSD) for all the above parameters were calculated.

    RESULTS: A total of 28 patients (4 males; 24 females) with the mean age of 75.6 ± 7.7 years were recruited into this study. The mean cement volume injected was 5.5 ± 1.8 ml. There was no difference between supine stress and postoperative radiographs for AVH ( p = 0.507), PVH ( p = 0.913) and WEPA ( p = 0.379). The MVH ( p = 0.026) and RKA ( p = 0.005) were significantly less in the supine stress radiographs compared to postoperative radiographs. There was significant correlation ( p < 0.05) between supine stress and postoperative AVH, MVH, PVH, WEPA, and RKA. The SSD for AVH, PVH, WEPA, and RKA did not have significant correlation with the cement volume ( p > 0.05). Only the SSD-MVH had significant correlation with cement volume, but the correlation was weak ( r = 0.39, p = 0.04).

    CONCLUSIONS: Dynamic mobility stress radiographs can predict the postoperative vertebral height restoration and kyphosis correction after vertebroplasty for thoracolumbar osteoporotic fracture with intravertebral clefts. However, it did not reliably predict the amount of cement volume injected as it was affected by other factors.

    Matched MeSH terms: Bone Cements*
  19. Chan, C.K., Goh, J.H., Ng, W.M., Kwan, M.K., Merican, A.M., Soong, K.L.
    Malays Orthop J, 2010;4(2):40-43.
    MyJurnal
    A 20- year-old female student was involved in a motor vehicle accident. She sustained a severe friction injury to the left knee that resulted in considerable soft tissue and bone loss. There was also damage to the knee extensor mechanism, tibialis anterior muscle, femoral trochlea, the anterior half of the tibial plateau extending distally to the proximal tibia and skin. However, there was no crushing of the limb or resultant neurovascular deficit but cancellous bone and the remainder of the joint were exposed. Repeated surgical debridement was performed and was followed by covering of the soft tissue using a latissimus dorsi free flap and skin grafts. The bony defect was reconstituted with antibiotic bone cement to prevent flap adherence and shrinkage, enhance stability and prevent fracture. The cement was later removed at the time of arthrodesis at which time an ipsilateral double barrel vascularised fibular graft supplemented with autogenously cancellous bone and a ring fixator was used. Computer tomography confirmed union at three months post procedure. The fixator was then removed and a tibialis posterior transfer was performed.
    Matched MeSH terms: Bone Cements
  20. Arif M, Sivananthan S, Choon DS
    J Orthop Surg (Hong Kong), 2004 Jun;12(1):25-30.
    PMID: 15237118
    To report the outcome of revised total hip arthroplasty procedures involving an anterior cortical window, extensive strut allografts, and an Exeter impaction graft.
    Matched MeSH terms: Bone Cements
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links