Displaying publications 21 - 40 of 78 in total

Abstract:
Sort:
  1. Aung SW, Abu Kasim NH, Ramasamy TS
    Methods Mol Biol, 2019;2045:323-335.
    PMID: 31201682 DOI: 10.1007/7651_2019_242
    The therapeutic potential of human mesenchymal stromal stem cells (hMSCs) for cell-based therapeutic is greatly influenced by the in vitro culture condition including the culture conditions. Nevertheless, there are many technical challenges needed to be overcome prior to the clinical use including the quantity, quality, and heterogeneity of the cells. Therefore, it is necessary to develop a stem cell culture procedure or protocol for cell expansion in order to generate reproducible and high-quality cells in accordance with good manufacturing practice for clinical and therapeutic purposes. Here we assessed the MSCs characteristic of human Wharton's jelly mesenchymal stromal cells in in vitro culture according to the criteria established by the International Society for Cellular Therapy. Besides, the viability of the WJMSCs was determined in order to increase the confidence that the cells are employed to meet the therapeutic efficacy.
    Matched MeSH terms: Cell Differentiation/drug effects
  2. Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:542-548.
    PMID: 26652406 DOI: 10.1016/j.msec.2015.10.024
    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O3) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100°C since higher temperatures would impair the hardness of TiN coating. By contrast, O3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant.
    Matched MeSH terms: Cell Differentiation/drug effects
  3. AbdulQader ST, Kannan TP, Rahman IA, Ismail H, Mahmood Z
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:225-233.
    PMID: 25686943 DOI: 10.1016/j.msec.2014.12.070
    Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.
    Matched MeSH terms: Cell Differentiation/drug effects*
  4. Siow KS, Abdul Rahman AS, Ng PY, Majlis BY
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110225.
    PMID: 31761201 DOI: 10.1016/j.msec.2019.110225
    Role of sulfur (S) and nitrogen (N) groups in promoting cell adhesion or commonly known as biocompatibility, is well established, but their role in reducing bacterial attachment and growth is less explored or not well-understood. Natural sulfur-based compounds, i.e. sulfide, sulfoxide and sulfinic groups, have shown to inhibit bacterial adhesion and biofilm formation. Hence, we mimicked these surfaces by plasma polymerizing thiophene (ppT) and air-plasma treating this ppT to achieve coatings with S of similar oxidation states as natural compounds (ppT-air). In addition, the effects of these N and S groups from ppT-air were also compared with the biocompatible amine-amide from n-heptylamine plasma polymer. Crystal violet assay and live and dead fluorescence staining of E. coli and S. aureus showed that all the N and S coated surfaces generated, including ppHA, ppT and ppT-air, produced similarly potent, growth reduction of both bacteria by approximately 65% at 72 h compared to untreated glass control. The ability of osteogenic differentiation in Wharton's jelly mesenchymal stem cells (WJ-MSCs) were also used to test the cell biocompatibility of these surfaces. Alkaline phosphatase assay and scanning electron microscopy imaging of these WJ-MSCs growths indicated that ppHA, and ppT-air were cell-friendly surfaces, with ppHA showing the highest osteogenic activity. In summary, the N and S containing surfaces could reduce bacteria growth while promoting mammalian cell growth, thus serve as potential candidate surfaces to be explored further for biomaterial applications.
    Matched MeSH terms: Cell Differentiation/drug effects
  5. Vimalraj S, Rajalakshmi S, Raj Preeth D, Vinoth Kumar S, Deepak T, Gopinath V, et al.
    Mater Sci Eng C Mater Biol Appl, 2018 Feb 01;83:187-194.
    PMID: 29208278 DOI: 10.1016/j.msec.2017.09.005
    Copper(II) complex of quercetin Cu+Q, mixed ligand complexes, quercetin-Cu(II)-phenanthroline [Cu+Q(PHt)] and quercetin-Cu(II)-neocuproine [Cu+Q(Neo)] have been synthesized and characterized. From the FT-IR spectroscopic studies, it was evident that C-ring of quercetin is involved in the metal chelation in all the three copper complexes. C-ring chelation was further proven by UV-Visible spectra and the presence of Cu(II) from EPR spectroscopic investigations. These complexes were found to have osteogenic and angiogenic properties, observed through in vitro osteoblast differentiation and chick embryo angiogenesis assay. In osteoblast differentiation, quercetin-Cu(II) complexes treatment increased calcium deposition and alkaline phosphatase activity (ALP) activity at the cellular level and stimulated Runx2 mRNA and protein, ALP mRNA and type 1 collagen mRNA expression at the molecular level. Among the complexes, Q+Cu(PHt) showed more effects on osteoblast differentiation when compared to that of other two copper complexes. Additionally, Q+Cu(Neo) showed more effect compared to Q+Cu. Furthermore, the effect of these complexes on osteoblast differentiation was confirmed by the expression of osteoblast specific microRNA, pre-mir-15b. The chick embryo angiogenesis assay showed that angiogenic parameters such as blood vessel length, size and junctions were stimulated by these complexes. Thus, the present study demonstrated that quercetin copper(II) complexes exhibit as a pharmacological agent for the orthopedic application.
    Matched MeSH terms: Cell Differentiation/drug effects
  6. Mat MC, Mohamed AS, Hamid SS
    Lipids Health Dis, 2011;10:216.
    PMID: 22104447 DOI: 10.1186/1476-511X-10-216
    Oxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil.
    Matched MeSH terms: Cell Differentiation/drug effects*
  7. Yap WH, Ahmed N, Lim YM
    Lipids, 2016 10;51(10):1153-1159.
    PMID: 27540737 DOI: 10.1007/s11745-016-4186-1
    Maslinic acid is a natural pentacyclic triterpenoid which has anti-inflammatory properties. A recent study showed that secretory phospholipase A2 (sPLA2) may be a potential binding target of maslinic acid. The human group IIA (hGIIA)-sPLA2 is found in human sera and their levels are correlated with severity of inflammation. This study aims to determine whether maslinic acid interacts with hGIIA-sPLA2 and inhibits inflammatory response induced by this enzyme. It is shown that maslinic acid enhanced intrinsic fluorescence of hGIIA-sPLA2 and inhibited its enzyme activity in a concentration-dependent manner. Molecular docking revealed that maslinic acid binds to calcium binding and interfacial phospholipid binding site, suggesting that it inhibit access of catalytic calcium ion for enzymatic reaction and block binding of the enzyme to membrane phospholipid. The hGIIA-sPLA2 enzyme is also responsible in mediating monocyte recruitment and differentiation. Results showed that maslinic acid inhibit hGIIA-sPLA2-induced THP-1 cell differentiation and migration, and the effect observed is specific to hGIIA-sPLA2 as cells treated with maslinic acid alone did not significantly affect the number of adherent and migrated cells. Considering that hGIIA-sPLA2 enzyme is known to hydrolyze glyceroacylphospholipids present in lipoproteins and cell membranes, maslinic acid may bind and inhibit hGIIA-sPLA2 enzymatic activity, thereby reduces the release of fatty acids and lysophospholipids which stimulates monocyte migration and differentiation. This study is the first to report on the molecular interaction between maslinic acid and inflammatory target hGIIA-sPLA2 as well as its effect towards hGIIA-sPLA2-induced THP-1 monocyte adhesive and migratory capabilities, an important immune-inflammation process in atherosclerosis.
    Matched MeSH terms: Cell Differentiation/drug effects
  8. Thent ZC, Froemming GRA, Ismail ABM, Fuad SBSA, Muid S
    Life Sci, 2018 Oct 01;210:214-223.
    PMID: 30145154 DOI: 10.1016/j.lfs.2018.08.057
    AIMS: Phytoestrogens and xenoestrogens act as agonists/antagonists in bone formation and differentiation. Strong bones are depending of the ability of osteoblasts to form new tissue and to mineralize the newly formed tissue. Dysfunctional or loss of mineralization leads to weak bone and increased fracture risk. In this study, we reported the effect of different types of phytoestrogens (daidzein, genistein and equol) on mineralization in hFOB 1.19 cells stimulated with bisphenol A (BPA).

    MAIN METHODS: Cell mineralization capacity of phytoestrogens was investigated by evaluating calcium, phosphate content and alkaline phosphatase activity. Bone related markers, osteocalcin and osteonectin, responsible in maintaining mineralization were also measured.

    KEY FINDINGS: BPA is significantly interfering with bone mineralization in hFOB 1.19 cells. However, the enhanced mineralization efficacy of daidzein and genistein (particularly at a dose of 5 and 40 μg/mL, respectively) was evidenced by increasing calcium and phosphate content, higher ALP activity, compared to the untreated BPA group. The quantitative analyses were confirmed through morphological findings. Osteocalcin and osteonectin levels were increased in phytoestrogens-treated cells. These findings revealed the potential effect of phytoestrogens in reverting the demineralization process due to BPA exposure in hFOB 1.19 cells.

    SIGNIFICANCE: We found that osteoblast differentiation and mineralization were maintained following treatment with phytoestrogens under BPA exposure.

    Matched MeSH terms: Cell Differentiation/drug effects*
  9. Thent ZC, Froemming GRA, Muid S
    Life Sci, 2018 Apr 01;198:1-7.
    PMID: 29432759 DOI: 10.1016/j.lfs.2018.02.013
    Bisphenol A (BPA) (2,2,-bis (hydroxyphenyl) propane), a well-known endocrine disruptor (ED), is the exogenous chemical that mimic the natural endogenous hormone like oestrogen. Due to its extensive exposure to humans, BPA is considered to be a major toxicological agent for general population. Environmental exposure of BPA results in adverse health outcomes including bone loss. BPA disturbs the bone health by decreasing the plasma calcium level and inhibiting the calcitonin secretion. BPA also stimulated differentiation and induced apoptosis in human osteoblasts and osteoclasts. However, little is known about the underlying mechanisms of the untoward effect of BPA against bone metabolism. The present review gives an overview on the possible mechanisms of BPA towards bone loss. The previous literature shows that BPA exerts its toxic effect on bone cells by binding to the oestrogen related receptor-gamma (ERγ), reducing the bone morphogenic protein-2 (BMP-2) and alkaline phosphatase (ALP) activities. BPA interrupts the bone metabolism via RANKL, apoptosis and Wnt/β-catenin signaling pathways. It is, however, still debated on the exact underlying mechanism of BPA against bone health. We summarised the molecular evidences with possible mechanisms of BPA, an old environmental culprit, in bone loss and enlightened the underlying understanding of adverse action of BPA in the society.
    Matched MeSH terms: Cell Differentiation/drug effects
  10. Sebastian AA, Kannan TP, Norazmi MN, Nurul AA
    J Tissue Eng Regen Med, 2018 08;12(8):1856-1866.
    PMID: 29774992 DOI: 10.1002/term.2706
    Stem cells derived from human exfoliated deciduous teeth (SHED) represent a promising cell source for bone tissue regeneration. This study evaluated the effects of interleukin-17A (IL-17A) on the osteogenic differentiation of SHED. SHED were cultured in complete alpha minimum essential medium supplemented with osteoinducing reagents and treated with recombinant IL-17A. The cells were quantitatively analysed for proliferative activity by MTS assay, cell markers expression, and apoptotic activity by flow cytometry. For osteogenic differentiation, alkaline phosphatase (ALP) activity was quantified; mineralization assays were carried out using von Kossa and Alizarin red, and expression of osteogenic markers were analysed by real-time polymerase chain reaction and Western blot. The results showed that treatment with IL-17A increased proliferative activity in a dose-dependent manner, but reduced the expression of stem cell markers (c-Myc and Nanog) as the days progressed. IL-17A induced osteogenic differentiation in SHED as evidenced by high ALP activity, increased matrix mineralization, and upregulation of the mRNA expression of the osteogenic markers ALP, alpha 1 type 1 collagen (Col1A1), runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and osteoprotegerin (OPG) but downregulation of receptor activator of nuclear factor κB ligand (RANKL) as well as altering the OPG/RANKL ratio. Findings from our study indicate that IL-17A enhances proliferation and osteogenic differentiation of SHED by regulating OPG/RANKL mechanism thus suggests therapeutic potential of IL-17A in bone regeneration.
    Matched MeSH terms: Cell Differentiation/drug effects*
  11. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
    Matched MeSH terms: Cell Differentiation/drug effects*
  12. Beh JE, Khoo LT, Latip J, Abdullah MP, Alitheen NB, Adam Z, et al.
    J Ethnopharmacol, 2013 Oct 28;150(1):339-52.
    PMID: 24029250 DOI: 10.1016/j.jep.2013.09.001
    Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes.
    Matched MeSH terms: Cell Differentiation/drug effects
  13. Ruszymah BH, Chowdhury SR, Manan NA, Fong OS, Adenan MI, Saim AB
    J Ethnopharmacol, 2012 Mar 27;140(2):333-8.
    PMID: 22301444 DOI: 10.1016/j.jep.2012.01.023
    Centella asiatica is a traditional herbal medicine that has been shown to have pharmacological effect on skin wound healing, and could be potential therapeutic agent for corneal epithelial wound healing.
    Matched MeSH terms: Cell Differentiation/drug effects
  14. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ethnopharmacol, 2017 Jan 04;195:143-158.
    PMID: 27818256 DOI: 10.1016/j.jep.2016.10.085
    ETHNOPHARMACOLOGICAL RELEVANCE: Eurycoma longifolia (EL) has been well-studied traditionally as a chief ingredient of many polyherbal formulations for the management of male osteoporosis. It has also been well-recognised to protect against bone calcium loss in orchidectomised rats.

    AIM OF THE STUDY: To evaluate the effects of EL on the time-mannered sequential proliferative, differentiative, and morphogenic modulation in osteoblasts compared with testosterone.

    MATERIALS AND METHODS: Cell proliferation was analysed using MTS assay and phase contrast microscopy. Osteogenic differentiation of MC3T3-E1 cells was assessed through a series of characteristic assays which include crystal violet staining, alkaline phosphatase (ALP) activity and Van Gieson staining. Taken together, the bone mineralization of extra cellular matrix (ECM) was estimated using alizarin red s (ARS) staining, von kossa staining, scanning electron microscopic (SEM) and energy dispersive x-ray (EDX) analysis.

    RESULTS: The cell proliferation data clearly revealed the efficiency of EL particularly at a dose of 25µg/mL, in improving the growth of MC3T3-E1 cells compared with the untreated cells. Data also showed the prominence of EL in significantly promoting ALP activity throughout the entire duration of treatment compared with the testosterone-treated cells. The osteogenic differentiation potential of EL was further explored by analysing mineralization data which revealed that the calcified nodule formation (calcium deposition) and phosphate deposition was more pronounced in cells treated with 25µg/mL concentration of EL at various time points compared with the untreated and testosterone treated cells. The scanning electron microscopic (SEM) analysis also revealed highest globular masses of mineral deposits (identified as white colour crystals) in the ECM of cultured cells treated with 25µg/mL concentration of EL.

    CONCLUSION: Compared to testosterone, greater potential of EL in promoting the proliferation and osteogenic differentiation of MC3T3-E1 cells provides an in vitro basis for the prevention of male osteoporosis. Thus, we anticipate that EL can be considered as an alternative approach to testosterone replacement therapy (TRT) for the treatment of male osteoporosis.

    Matched MeSH terms: Cell Differentiation/drug effects*
  15. Sritharan S, Kannan TP, Norazmi MN, Nurul AA
    J Craniomaxillofac Surg, 2018 Aug;46(8):1361-1367.
    PMID: 29805067 DOI: 10.1016/j.jcms.2018.05.002
    OBJECTIVE: In this study, we evaluated the potential role of IL-6 and/or IL-17A in regulating the OPG/RANKL (osteoprotegerin/receptor activator of nuclear factor kappa b ligand) system of murine osteoblast cell line (MC3T3-E1) cultured on hydroxyapatite (HA).

    METHODS: MC3T3-E1 cells were seeded on HA and treated with recombinant IL-6 or rIL-17A or combination of the two cytokines. Cell proliferation and differentiation activity were measured by MTS and alkaline phosphatase assays respectively. Observation of cell adhesion and proliferation was examined by scanning electron microscopy. Gene and protein expressions were performed on RANKL and OPG using qPCR, Western blot and ELISA.

    RESULTS: We demonstrated that treatment with recombinant IL-17A (rIL-17A) and the combination rIL-6/rIL-17A promoted better adhesion and higher proliferation of cells on HA. Cells treated with rIL-17A and the combination cytokines showed a significant increase in differentiation activity on day 7, 10 and 14 as indicated by ALP activity (p 

    Matched MeSH terms: Cell Differentiation/drug effects
  16. Leong YY, Ng WH, Umar Fuaad MZ, Ng CT, Ramasamy R, Lim V, et al.
    J Cell Biochem, 2019 06;120(6):9104-9116.
    PMID: 30548289 DOI: 10.1002/jcb.28186
    Stem cell therapy offers hope to reconstitute injured myocardium and salvage heart from failing. A recent approach using combinations of derived Cardiac-derived c-kit expressing cells (CCs) and mesenchymal stem cells (MSCs) in transplantation improved infarcted hearts with a greater functional outcome, but the effects of MSCs on CCs remain to be elucidated. We used a novel two-step protocol to clonogenically amplify colony forming c-kit expressing cells from 4- to 6-week-old C57BL/6N mice. This method yielded highly proliferative and clonogenic CCs with an average population doubling time of 17.2 ± 0.2, of which 80% were at the G1 phase. We identified two distinctly different CC populations based on its Sox2 expression, which was found to inversely related to their nkx2.5 and gata4 expression. To study CCs after MSC coculture, we developed micron-sized particles of iron oxide-based magnetic reisolation method to separate CCs from MSCs for subsequent analysis. Through validation using the sex and species mismatch CC-MSC coculture method, we confirmed that the purity of the reisolated cells was greater than 85%. In coculture experiment, we found that MSCs prominently enhanced Ctni and Mef2c expressions in Sox2 pos CCs after the induction of cardiac differentiation, and the level was higher than that of conditioned medium Sox2 pos CCs. However, these effects were not found in Sox2 neg CCs. Immunofluorescence labeling confirmed the presence of cardiac-like cells within Sox2 pos CCs after differentiation, identified by its cardiac troponin I and α-sarcomeric actinin expressions. In conclusion, this study shows that MSCs enhance CC differentiation toward cardiac myocytes. This enhancement is dependent on CC stemness state, which is determined by Sox2 expression.
    Matched MeSH terms: Cell Differentiation/drug effects*
  17. Vinoth KJ, Manikandan J, Sethu S, Balakrishnan L, Heng A, Lu K, et al.
    J Biotechnol, 2014 Aug 20;184:154-68.
    PMID: 24862194 DOI: 10.1016/j.jbiotec.2014.05.009
    This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures.
    Matched MeSH terms: Cell Differentiation/drug effects*
  18. Yap WH, Cheah TY, Yong LC, Chowdhury SR, Ng MH, Kwan Z, et al.
    J Biosci, 2021;46.
    PMID: 34475316
    Psoriasis is a chronic skin disease characterized by thickening and disorganization of the skin's protective barrier. Although current models replicate some aspects of the disease, development of therapeutic strategies have been hindered by absence of more relevant models. This study aimed to develop and characterize an in vitro psoriatic human skin equivalent (HSE) using human keratinocytes HaCat cell line grown on fibroblasts-derived matrices (FDM). The constructed HSEs were treated with cytokines (IL-1α, TNF-α, IL-6, and IL22) to allow controlled induction of psoriasis-associated features. Histological stainings showed that FDMHSE composed of a fully differentiated epidermis and fibroblast-populated dermis comparable to native skin and rat tail collagen-HSE. Hyperproliferation (CK16 and Ki67) and inflammatory markers (TNF-α and IL-6) expression were significantly enhanced in the cytokine-induced FDM- and rat tail collagen HSEs compared to non-treated HSE counterparts. The characteristics were in line with those observed in psoriasis punch biopsies. Treatment with all-trans retinoic acid (ATRA) has shown to suppress these effects, where HSE models treated with both ATRA and cytokines exhibit histological characteristics, hyperproliferation and differentiation markers expression like non-treated control HSEs. Cytokine-induced FDM-HSE, constructed entirely from human cell lines, provides an excellent opportunity for psoriasis research and testing new therapeutics.
    Matched MeSH terms: Cell Differentiation/drug effects*
  19. Fatimah SS, Tan GC, Chua KH, Tan AE, Hayati AR
    J Biosci Bioeng, 2012 Aug;114(2):220-7.
    PMID: 22578596 DOI: 10.1016/j.jbiosc.2012.03.021
    Human amnion epithelial cells (HAECs) hold great promise in tissue engineering for regenerative medicine. Large numbers of HAECs are required for this purpose. Hence, exogenous growth factor is added to the culture medium to improve epithelial cells proliferation. The aim of the present study was to determine the effects of epidermal growth factor (EGF) on the proliferation and cell cycle regulation of cultured HAECs. HAECs at P1 were cultured for 7 days in medium containing an equal volume mix of HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of EGF (0, 5, 10, 20, 30 and 50 ng/ml EGF) in reduced serum. Morphology, growth kinetics and cell cycle analysis using flow cytometry were assessed. Quantitative gene expression for cell cycle control genes, pluripotent transcription factors, epithelial genes and neuronal genes were also determined. EGF enhanced HAECs proliferation with optimal concentration at 10 ng/ml EGF. EGF significantly increased the proportion of HAECs at S- and G2/M-phase of the cell cycle compared to the control. At the end of culture, HAECs remained as diploid cells under cell cycle analysis. EGF significantly decreased the mRNA expression of p21, pRb, p53 and GADD45 in cultured HAECs. EGF also significantly decreased the pluripotent genes expression: Oct-3/4, Sox2 and Nanog; epithelial genes expression: CK14, p63, CK1 and Involucrin; and neuronal gene expression: NSE, NF-M and MAP 2. The results suggested that EGF is a strong mitogen that promotes the proliferation of HAECs through cell cycle regulation. EGF did not promote HAECs differentiation or pluripotent genes expression.
    Matched MeSH terms: Cell Differentiation/drug effects
  20. Kumar SS, Alarfaj AA, Munusamy MA, Singh AJ, Peng IC, Priya SP, et al.
    Int J Mol Sci, 2014;15(12):23418-47.
    PMID: 25526563 DOI: 10.3390/ijms151223418
    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
    Matched MeSH terms: Cell Differentiation/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links