Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Masir N, Campbell LJ, Jones M, Mason DY
    Pathology, 2010 Apr;42(3):212-6.
    PMID: 20350212 DOI: 10.3109/00313021003631296
    The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present.
    Matched MeSH terms: Epitopes, B-Lymphocyte/genetics*; Epitopes, B-Lymphocyte/immunology
  2. Ng AWR, Tan PJ, Hoo WPY, Liew DS, Teo MYM, Siak PY, et al.
    PeerJ, 2018;6:e5056.
    PMID: 30042874 DOI: 10.7717/peerj.5056
    Background: Somatic point substitution mutations in the KRAS proto-oncogene primarily affect codons 12/13 where glycine is converted into other amino acids, and are highly prevalent in pancreatic, colorectal, and non-small cell lung cancers. These cohorts are non-responsive to anti-EGFR treatments, and are left with non-specific chemotherapy regimens as their sole treatment options. In the past, the development of peptide vaccines for cancer treatment was reported to have poor AT properties when inducing immune responses. Utilization of bioinformatics tools have since become an interesting approach in improving the design of peptide vaccines based on T- and B-cell epitope predictions.

    Methods: In this study, the region spanning exon 2 from the 4th to 18th codon within the peptide sequence of wtKRAS was chosen for sequence manipulation. Mutated G12V and G13D K-ras controls were generated in silico, along with additional single amino acid substitutions flanking the original codon 12/13 mutations. IEDB was used for assessing human and mouse MHC class I/II epitope predictions, as well as linear B-cell epitopes predictions, while RNA secondary structure prediction was performed via CENTROIDFOLD. A scoring and ranking system was established in order to shortlist top mimotopes whereby normalized and reducing weighted scores were assigned to peptide sequences based on seven immunological parameters. Among the top 20 ranked peptide sequences, peptides of three mimotopes were synthesized and subjected to in vitro and in vivo immunoassays. Mice PBMCs were treated in vitro and subjected to cytokine assessment using CBA assay. Thereafter, mice were immunized and sera were subjected to IgG-based ELISA.

    Results: In silico immunogenicity prediction using IEDB tools shortlisted one G12V mimotope (68-V) and two G13D mimotopes (164-D, 224-D) from a total of 1,680 candidates. Shortlisted mimotopes were predicted to promote high MHC-II and -I affinities with optimized B-cell epitopes. CBA assay indicated that: 224-D induced secretions of IL-4, IL-5, IL-10, IL-12p70, and IL-21; 164-D triggered IL-10 and TNF-α; while 68-V showed no immunological responses. Specific-IgG sera titers against mutated K-ras antigens from 164-D immunized Balb/c mice were also elevated post first and second boosters compared to wild-type and G12/G13 controls.

    Discussion: In silico-guided predictions of mutated K-ras T- and B-cell epitopes were successful in identifying two immunogens with high predictive scores, Th-bias cytokine induction and IgG-specific stimulation. Developments of such immunogens are potentially useful for future immunotherapeutic and diagnostic applications against KRAS(+) malignancies, monoclonal antibody production, and various other research and development initiatives.

    Matched MeSH terms: Epitopes, B-Lymphocyte
  3. Ramanathan B, Poh CL, Kirk K, McBride WJ, Aaskov J, Grollo L
    PLoS One, 2016;11(5):e0155900.
    PMID: 27223692 DOI: 10.1371/journal.pone.0155900
    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology*; Epitopes, B-Lymphocyte/chemistry
  4. Hiu JJ, Fung JKY, Tan HS, Yap MKK
    Sci Rep, 2023 Jul 28;13(1):12271.
    PMID: 37507457 DOI: 10.1038/s41598-023-39222-2
    Approximate 70% of cobra venom is composed of cytotoxin (CTX), which is responsible for the dermonecrotic symptoms of cobra envenomation. However, CTX is generally low in immunogenicity, and the antivenom is ineffective in attenuating its in vivo toxicity. Furthermore, little is known about its epitope properties for empirical antivenom therapy. This study aimed to determine the epitope sequences of CTX using the immunoinformatic analyses and epitope-omics profiling. A conserved CTX was used in this study to determine its T-cell and B-cell epitope sequences using immunoinformatic tools and molecular docking simulation with different Human Leukocyte Antigens (HLAs). The potential T-cell and B-cell epitopes were 'KLVPLFY,' 'CPAGKNLCY,' 'MFMVSTPTK,' and 'DVCPKNSLL.' Molecular docking simulations disclosed that the HLA-B62 supertype exhibited the greatest binding affinity towards cobra venom cytotoxin. The namely L7, G18, K19, N20, M25, K33, V43, C44, K46, N47, and S48 of CTX exhibited prominent intermolecular interactions with HLA-B62. The multi-enzymatic-limited-digestion/liquid chromatography-mass spectrometry (MELD/LC-MS) also revealed three potential epitope sequences as 'LVPLFYK,' 'MFMVS,' and 'TVPVKR'. From different epitope mapping approaches, we concluded four potential epitope sites of CTX as 'KLVPLFYK', 'AGKNL', 'MFMVSTPKVPV' and 'DVCPKNSLL'. Site-directed mutagenesis of these epitopes confirmed their locations at the functional loops of CTX. These epitope sequences are crucial to CTX's structural folding and cytotoxicity. The results concluded the epitopes that resided within the functional loops constituted potential targets to fabricate synthetic epitopes for CTX-targeted antivenom production.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  5. Chin CF, Lai JY, Choong YS, Anthony AA, Ismail A, Lim TS
    Sci Rep, 2017 05 19;7(1):2176.
    PMID: 28526816 DOI: 10.1038/s41598-017-01987-8
    Hemolysin E (HlyE) is an immunogenic novel pore-forming toxin involved in the pathogenesis of typhoid fever. Thus, mapping of B-cell epitopes of Salmonella enterica serovar Typhi (S. Typhi) is critical to identify key immunogenic regions of HlyE. A random 20-mer peptide library was used for biopanning with enriched anti-HlyE polyclonal antibodies from typhoid patient sera. Bioinformatic tools were used to refine, analyze and map the enriched peptide sequences against the protein to identify the epitopes. The analysis identified both linear and conformational epitopes on the HlyE protein. The predicted linear GAAAGIVAG and conformational epitope PYSQESVLSADSQNQK were further validated against the pooled sera. The identified epitopes were then used to isolate epitope specific monoclonal antibodies by antibody phage display. Monoclonal scFv antibodies were enriched for both linear and conformational epitopes. Molecular docking was performed to elucidate the antigen-antibody interaction of the monoclonal antibodies against the epitopes on the HlyE monomer and oligomer structure. An in-depth view of the mechanistic and positional characteristics of the antibodies and epitope for HlyE was successfully accomplished by a combination of phage display and bioinformatic analysis. The predicted function and structure of the antibodies highlights the possibility of utilizing the antibodies as neutralizing agents for typhoid fever.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology*; Epitopes, B-Lymphocyte/chemistry
  6. Druka A, Burns T, Zhang S, Hull R
    J Gen Virol, 1996 Aug;77 ( Pt 8):1975-83.
    PMID: 8760450
    Rice tungro spherical virus (RTSV) has an RNA genome of more than 12 kb with various features which classify it as a plant picornavirus. The capsid comprises three coat protein (CP) species, CP1, CP2 and CP3, with predicted molecular masses of 22.5, 22.0 and 33 kDa, respectively, which are cleaved from a polyprotein. In order to obtain information on the properties of these proteins, each was expressed in E. coli, purified as a fusion to the maltose-binding protein and used for raising a polyclonal antiserum. CP1, CP2 and CP3 with the expected molecular masses were detected specifically in virus preparations. CP3 is probably the major antigenic determinant on the surface of RTSV particles, as was shown by ELISA, Western blotting and immunogold electron microscopy using antisera obtained against whole virus particles and to each CP separately. In some cases, especially in crude extracts, CP3 antiserum detected several other proteins (40-42 kDa), which could be products of CP3 post-translational modification. No serological differences were detected between the three CPs from isolates from the Philippines, Thailand, Malaysia and India. The CP3-related 40-42 kDa proteins of the Indian RTSV isolate have a slightly higher electrophoretic mobility (42-44 kDa) and a different response to cellulolytic enzyme preparations, which allows them to be differentiated from south-east Asian isolates.
    Matched MeSH terms: Epitopes, B-Lymphocyte/immunology
  7. Fazal F, Anwar T, Waheed Y, Parvaiz F
    Trop Biomed, 2020 Sep 01;37(3):566-577.
    PMID: 33612772 DOI: 10.47665/tb.37.3.566
    This study is focused towards developing a global consensus sequence of nonstructural protein 2 (NSP2), a protease of Chikungunya Virus (CHIKV) and predict immunogenic promiscuous T-cell epitopes based on various bioinformatics tools. To date, no epitope data is available for the Chikungunya virus in the IEDB database. In this study, 100 available nucleotide sequences of NSP2-CHIKV belonging to different strains were downloaded from the National Centre for Biotechnology Information (NCBI) database. The nucleotide sequences were subjected to translated sequencing using the EXPASY tool followed by protein alignment using the CLC workbench and a global consensus sequence for the respective protein was developed. IEDB tool was used to predict HLA-I and HLA-II binding promiscuous epitopes from the consensus sequence of NSP2-CHIKV. Thirty-four B-cell based epitopes are predicted and the promiscuous epitope is VVDTTGSTKPDPGD at position 341-354. Twenty-six MHC-I short peptide epitopes are predicted to bind with HLA-A. The promiscuous epitopes predicted to bind with HLA-A*01:01 are VTAIVSSLHY, SLSESATMVY, FSKPLVYY, QPTDHVVGEY at positions 317-326, 84-93, 535-544 and 15-24 with percentile ranks 0.17, 0.39, 0.51 and 0.81, respectively. Twenty-four MHC-II short peptide epitopes are predicted for HLA-DRB. The promiscuous epitope predicted to bind with HLA-DRB*01:01 is VVGEYLVLSPQTVLRS from 20-35 with a lowest percentile rank of 0.01. These predicted epitopes can be effective targets towards development of vaccine against CHIKV. Epitopes predicted in this study displayed good binding affinity, antigenicity and promiscuity for the HLA classes. These predicted epitopes can prove to be translationally important towards the development of CHIKV.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  8. Tan JH, Cheong FW, Lau YL, Fong MY
    Trop Biomed, 2023 Mar 01;40(1):37-44.
    PMID: 37356002 DOI: 10.47665/tb.40.1.004
    Circumsporozoite protein (CSP) central repeat region is one of the main target regions of the RTS,S/AS01 vaccine for falciparum infection as it consists of immunodominant B cell epitopes. However, there is a lack of study for P. knowlesi CSP central repeat region. This study aims to characterise the CSP repeat motifs of P. knowlesi isolates in Peninsular Malaysia. CSP repeat motifs of 64 P. knowlesi isolates were identified using Rapid Automatic Detection and Alignment of Repeats (RADAR). Antigenicity of the repeat motifs and linear B cell epitopes were predicted using VaxiJen 2.0, BepiPred-2.0 and BCPred, respectively. A total of 35 dominant repeat motifs were identified. The repeat motif "AGQPQAQGDGANAGQPQAQGDGAN" has the highest repeat frequency (n=15) and antigenicity index of 1.7986. All the repeat regions were predicted as B cell epitopes. In silico approaches revealed that all repeat motifs were antigenic and consisted of B cell epitopes which could be designed as knowlesi malaria vaccine.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  9. Tongco AMP, Rivera WL
    Trop Biomed, 2023 Jun 01;40(2):129-137.
    PMID: 37650398 DOI: 10.47665/tb.40.2.002
    Chikungunya virus (CHIKV) is a neglected tropical pathogen that causes fever and long-lasting severe arthralgia. Despite its high morbidity, there is still no licensed specific therapeutic option for it. This study proposes a multi-epitope subunit vaccine candidate for CHIKV, designed using computational methods. It was based on the E2 spike glycoprotein in CHIKV, from which T- and B-cell epitopes were predicted and then refined. The pan HLA DR-binding epitope (PADRE) was added to this refined construct, then simulated compared with the native protein, where it was predicted to elicit more than twice the number of antibody titers. Thus, this construct is potentially effective against CHIKV, which further experimentation using live models would be able to verify. This study also demonstrates the feasibility of using rational tools in the future to further optimize vaccine design.
    Matched MeSH terms: Epitopes, B-Lymphocyte
  10. Nguyen Thi le T, Sarmiento ME, Calero R, Camacho F, Reyes F, Hossain MM, et al.
    Tuberculosis (Edinb), 2014 Sep;94(5):475-81.
    PMID: 25034135 DOI: 10.1016/j.tube.2014.06.004
    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.
    Matched MeSH terms: Epitopes, B-Lymphocyte/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links