METHODS: LA reservoir strain (LASr), LA conduit strain (LAScd), and LA contractile strain (LASct) were measured using speckle-tracking echocardiography. The primary outcome was a composite of all-cause mortality, heart failure hospitalization, progression to New York Heart Association functional class III or IV, acute coronary syndrome, or syncope. Secondary outcomes 1 and 2 comprised the same end points but excluded acute coronary syndrome and additionally syncope, respectively. The prognostic performance of phasic LA strain cutoffs was evaluated in competing risk analyses, aortic valve replacement being the competing risk.
RESULTS: Among 173 patients (mean age, 69 ± 11 years; mean peak transaortic velocity, 4.0 ± 0.8 m/sec), median LASr, LAScd, and LASct were 27% (interquartile range [IQR], 22%-32%), 12% (IQR, 8%-15%), and 16% (IQR, 13%-18%), respectively. Over a median of 2.7 years (IQR, 1.4-4.6 years), the primary outcome and secondary outcomes 1 and 2 occurred in 66 (38%), 62 (36%), and 59 (34%) patients, respectively. LASr < 20%, LAScd < 6%, and LASct < 12% were identified as optimal cutoffs of the primary outcome. In competing risk analyses, progressing from echocardiographic to echocardiographic-clinical and combined models incorporating N-terminal pro-B-type natriuretic peptide, LA strain parameters outperformed other key echocardiographic variables and significantly predicted clinical outcomes. LASr < 20% was associated with the primary outcome and secondary outcome 1, LAScd < 6% with all clinical outcomes, and LASct < 12% with secondary outcome 2. LAScd < 6% had the highest specificity (95%) and positive predictive value (82%) for the primary outcome, and competing risk models incorporating LAScd < 6% had the best discriminative value.
CONCLUSIONS: In well-compensated patients with moderate to severe aortic stenosis and preserved left ventricular ejection fractions, LA strain was superior to other echocardiographic indices and incremental to N-terminal pro-B-type natriuretic peptide for risk stratification. LAScd < 6%, LASr < 20%, and LASct < 12% identified patients at higher risk for adverse outcomes.
OBJECTIVE: The purpose of this study was to identify predictors of A4 amplitude and high AVS.
METHODS: We analyzed 64 patients enrolled in MARVEL 2 who had visible P waves on electrocardiogram for assessing A4 amplitude and 40 patients with third-degree AV block for assessing AVS at rest. High AVS was defined as >90% correct atrial-triggered ventricular pacing. The association between clinical factors and echocardiographic parameters with A4 amplitude was investigated using a multivariable model with lasso variable selection. Variables associated with A4 amplitude together with premature ventricular contraction burden, sinus rate, and sinus rate variability (standard deviation of successive differences of P-P intervals [SDSD]) were assessed for association with AVS.
RESULTS: In univariate analysis, low A4 amplitude was inversely related to atrial function assessed by E/A ratio and e'/a' ratio, and was directly related to atrial contraction excursion (ACE) and atrial strain (Ɛa) on echocardiography (all P ≤.05). The multivariable lasso regression model found coronary artery bypass graft history, E/A ratio, ACE, and Ɛa were associated with low A4 amplitude. E/A ratio and SDSD were multivariable predictors of high AVS, with >90% probability if E/A <0.94 and SDSD <5 bpm.
CONCLUSION: Clinical parameters and echocardiographic markers of atrial function are associated with A4 signal amplitude. High AVS can be predicted by E/A ratio <0.94 and low sinus rate variability at rest.
MATERIALS AND METHODS: Atrial arrhythmogenesis was investigated in Langendorff-perfused young (3-4 month) and aged (>12 month), wild type (WT) and peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts modeling age-dependent chronic mitochondrial dysfunction during regular pacing and programmed electrical stimulation (PES).
RESULTS AND DISCUSSION: The Pgc-1β-/- genotype was associated with a pro-arrhythmic phenotype progressing with age. Young and aged Pgc-1β-/- hearts showed compromised maximum action potential (AP) depolarization rates, (dV/dt)max, prolonged AP latencies reflecting slowed action potential (AP) conduction, similar effective refractory periods and baseline action potential durations (APD90) but shortened APD90 in APs in response to extrasystolic stimuli at short stimulation intervals. Electrical properties of APs triggering arrhythmia were similar in WT and Pgc-1β-/- hearts. Pgc-1β-/- hearts showed accelerated age-dependent fibrotic change relative to WT, with young Pgc-1β-/- hearts displaying similar fibrotic change as aged WT, and aged Pgc-1β-/- hearts the greatest fibrotic change. Mitochondrial deficits thus result in an arrhythmic substrate, through slowed AP conduction and altered repolarisation characteristics, arising from alterations in electrophysiological properties and accelerated structural change.
OBJECTIVE: The purpose of this study was to sense atrial contractions from the Micra ACC signal and provide AV synchronous pacing.
METHODS: The Micra Accelerometer Sensor Sub-Study (MASS) and MASS2 early feasibility studies showed intracardiac accelerations related to atrial contraction can be measured via ACC in the Micra leadless pacemaker. The Micra Atrial TRacking Using A Ventricular AccELerometer (MARVEL) study was a prospective multicenter study designed to characterize the closed-loop performance of an AV synchronous algorithm downloaded into previously implanted Micra devices. Atrioventricular synchrony (AVS) was measured during 30 minutes of rest and during VVI pacing. AVS was defined as a P wave visible on surface ECG followed by a ventricular event <300 ms.
RESULTS: A total of 64 patients completed the MARVEL study procedure at 12 centers in 9 countries. Patients were implanted with a Micra for a median of 6.0 months (range 0-41.4). High-degree AV block was present in 33 patients, whereas 31 had predominantly intrinsic conduction during the study. Average AVS during AV algorithm pacing was 87.0% (95% confidence interval 81.8%-90.9%), 80.0% in high-degree block patients and 94.4% in patients with intrinsic conduction. AVS was significantly greater (P